Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 668: 531-546, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30856565

RESUMO

Getting an overall view of primary data available from existing Earth Observation Systems and networks databases for the Mediterranean Sea, the main objective of this paper is to identify temporal and geographic data gaps and to elaborate a new method for providing a prioritisation of missing data useful for end-users that have to pinpoint strategies and models to fill these gaps. Existing data sources have been identified from the analysis of the main projects and information systems available. A new method to perform the data gap analysis has been developed and applied to the whole Mediterranean basin as case study area, identifying and prioritise geographical and temporal data gaps considering and integrating the biological, geological, chemical and physical branches of the total environment. The obtained results highlighted both the main geographical data gaps subdividing the whole Mediterranean Sea into 23 sub-basins and the temporal data gaps considering data gathered since 1990. Particular attention has been directed to the suitability of data in terms of completeness, accessibility and aggregation, since data and information are often aggregated and could not be used for research needs. The elaborated inventory of existing data source includes a database of 477 data rows originated from 122 data platforms analysed, able to specify for each dataset the related data typologies and its accessibility. The obtained results indicate that 76% of the data comes from ongoing platforms, while the remaining 25% are related to platforms with non-operational monitoring systems. Since the large amount of analysed records includes data gathered in inhomogeneous ways, the prioritisation values obtained for each identified data gap simplify the data comparison and analysis. Lastly, the data gaps inventory contains geographic and temporal information for any missing parameter at the whole basin scale, as well as the spatial resolution of each available data.

2.
Sci Total Environ ; 590-591: 566-578, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284647

RESUMO

Interdisciplinarity and transdisciplinarity are the cornerstone for the future management of coastal ecosystems with many vulnerability and hazard indexes developed for this purpose, especially in the engineering literature, but with limited studies that considered ecological implications within a risk assessment. Similarly, the concept of prioritization of sites has been widely examined in biodiversity conservation studies, but only recently as an instrument for territory management. Considering coastal plant diversity at the species and community levels, and their vulnerability to three main potential hazards threatening coastal areas (oil spills, Hazardous and Noxious Substances pollution, fragmentation of natural habitats), the objective of this paper is to define an easy-to-use approach to locate and prioritize the areas more susceptible to those stressors, in order to have a practical instrument for risk management in the ordinary and extra-ordinary management of the coastline. The procedure has been applied at pilot areas in four Mediterranean countries (Italy, France, Lebanon and Tunisia). This approach can provide policy planners, decision makers and local communities an easy-to-use instrument able to facilitate the implementation of the ICZM (Integrated Coastal Zone Management) process in their territory.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , França , Itália , Líbano , Gestão de Riscos , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA