Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(11): 2870-2877, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34723510

RESUMO

To investigate the relationship between genome structure and function, we have developed a programmable CRISPR-Cas system for nuclear peripheral recruitment in yeast. We benchmarked this system at the HMR and GAL2 loci, both of which are well-characterized model systems for localization to the nuclear periphery. Using microscopy and gene silencing assays, we demonstrate that CRISPR-Cas-mediated tethering can recruit the HMR locus but does not detectably silence reporter gene expression. A previously reported Gal4-mediated tethering system does silence gene expression, and we demonstrate that the silencing effect has an unexpected dependence on the properties of the protein tether. The CRISPR-Cas system was unable to recruit GAL2 to the nuclear periphery. Our results reveal potential challenges for synthetic genome structure perturbations and suggest that distinct functional effects can arise from subtle structural differences in how genes are recruited to the periphery.


Assuntos
Sistemas CRISPR-Cas/genética , Núcleo Celular/genética , Expressão Gênica/genética , Inativação Gênica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/genética , Genes Reporter/genética , Técnicas Genéticas , Genoma Bacteriano/genética
2.
Small GTPases ; 11(6): 413-420, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-29634387

RESUMO

RAS signaling pathways govern diverse cellular processes, are dynamic, and exhibit marked plasticity. Yet, these features also present a considerable obstacle to their study. Here, we report the use of a recently described RAS rheostat, Chemically Inducible Activator of RAS (CIAR), to study two poorly understood phenomena in RAS biology. First, we show that short-term activation of wild type endogenous RAS can desensitize cells to EGF stimulation. Second, we examine the phenomena of paradoxical activation of RAS/ERK signaling by RAF inhibitors. Specifically, we characterize the effects on RAS/ERK signaling kinetics of four RAF inhibitors, which stabilize distinct ATP-binding site conformations. These results demonstrate the utility of CIAR in conducting quantitative studies of complex features of RAS biology.


Assuntos
Proteínas ras/metabolismo , Células Cultivadas , Humanos , Cinética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
Nat Biotechnol ; 37(10): 1209-1216, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501561

RESUMO

Chemical and optogenetic methods for post-translationally controlling protein function have enabled modulation and engineering of cellular functions. However, most of these methods only confer single-input, single-output control. To increase the diversity of post-translational behaviors that can be programmed, we built a system based on a single protein receiver that can integrate multiple drug inputs, including approved therapeutics. Our system translates drug inputs into diverse outputs using a suite of engineered reader proteins to provide variable dimerization states of the receiver protein. We show that our single receiver protein architecture can be used to program a variety of cellular responses, including graded and proportional dual-output control of transcription and mammalian cell signaling. We apply our tools to titrate the competing activities of the Rac and Rho GTPases to control cell morphology. Our versatile tool set will enable researchers to post-translationally program mammalian cellular processes and to engineer cell therapies.


Assuntos
Proteínas/química , Proteínas/metabolismo , Animais , Linhagem Celular , Técnicas de Química Combinatória , Desenho de Fármacos , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Optogenética/métodos , Conformação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Biologia Sintética/métodos
4.
J Am Chem Soc ; 141(8): 3352-3355, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30735038

RESUMO

Chemical methods that allow the spatial proximity of proteins to be temporally modulated are powerful tools for studying biology and engineering synthetic cellular behaviors. Here, we describe a new chemically controlled method for rapidly disrupting the interaction between two basally colocalized protein binding partners. Our chemically disrupted proximity (CDP) system is based on the interaction between the hepatitis C virus protease (HCVp) NS3a and a genetically encoded peptide inhibitor. Using clinically approved antiviral inhibitors as chemical disrupters of the NS3a/peptide interaction, we demonstrate that our CDP system can be used to confer temporal control over diverse intracellular processes. This NS3a-based CDP system represents a new modality for engineering chemical control over intracellular protein function that is complementary to currently available techniques.


Assuntos
Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Fenômenos Fisiológicos Celulares , Células HEK293 , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Humanos , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
5.
Chembiochem ; 20(12): 1519-1523, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30710419

RESUMO

Synthetic CRISPR-Cas transcription factors enable the construction of complex gene-expression programs, and chemically inducible systems allow precise control over the expression dynamics. To provide additional modes of regulatory control, we have constructed a chemically inducible CRISPR activation (CRISPRa) system in yeast that is mediated by recruitment to MS2-functionalized guide RNAs. We use reporter gene assays to systematically map the dose dependence, time dependence, and reversibility of the system. Because the recruitment function is encoded at the level of the guide RNA, it is straightforward to target multiple genes and independently regulate expression dynamics at individual targets. This approach provides a new method to engineer sophisticated, multigene programs with precise control over the dynamics of gene expression.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Saccharomyces cerevisiae/genética , Expressão Gênica
6.
Nat Chem Biol ; 13(1): 119-126, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27870838

RESUMO

Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here we report a computationally guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop chemically inducible activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS-ERK signaling dynamics from growth factor stimulation, and that these dynamics differ among cell types. We also found that the clinically approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach in design of intramolecularly regulated protein tools by applying it to the Rho family of guanine nucleotide exchange factors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Engenharia de Proteínas , Proteínas ras/química , Proteínas ras/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA