Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
medRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38903089

RESUMO

Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms (SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). We identified transcripts that met Bonferroni-corrected significance for each omic, were more significant in the correlated meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver and observed significant (PMETA<0.05 & PMETA

2.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789417

RESUMO

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Assuntos
Estudo de Associação Genômica Ampla , Homeostase do Telômero , Telômero , Humanos , Telômero/genética , Telômero/metabolismo , Células K562 , Homeostase do Telômero/genética , Polimorfismo de Nucleotídeo Único , Regulação da Expressão Gênica , Sistemas CRISPR-Cas
3.
Diabetes Care ; 46(11): 1978-1985, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756531

RESUMO

OBJECTIVE: Clonal hematopoiesis of indeterminate potential (CHIP) is an aging-related accumulation of somatic mutations in hematopoietic stem cells, leading to clonal expansion. CHIP presence has been implicated in atherosclerotic coronary heart disease (CHD) and all-cause mortality, but its association with incident type 2 diabetes (T2D) is unknown. We hypothesized that CHIP is associated with elevated risk of T2D. RESEARCH DESIGN AND METHODS: CHIP was derived from whole-genome sequencing of blood DNA in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) prospective cohorts. We performed analysis for 17,637 participants from six cohorts, without prior T2D, cardiovascular disease, or cancer. We evaluated baseline CHIP versus no CHIP prevalence with incident T2D, including associations with DNMT3A, TET2, ASXL1, JAK2, and TP53 variants. We estimated multivariable-adjusted hazard ratios (HRs) and 95% CIs with adjustment for age, sex, BMI, smoking, alcohol, education, self-reported race/ethnicity, and combined cohorts' estimates via fixed-effects meta-analysis. RESULTS: Mean (SD) age was 63.4 (11.5) years, 76% were female, and CHIP prevalence was 6.0% (n = 1,055) at baseline. T2D was diagnosed in n = 2,467 over mean follow-up of 9.8 years. Participants with CHIP had 23% (CI 1.04, 1.45) higher risk of T2D than those with no CHIP. Specifically, higher risk was for TET2 (HR 1.48; CI 1.05, 2.08) and ASXL1 (HR 1.76; CI 1.03, 2.99) mutations; DNMT3A was nonsignificant (HR 1.15; CI 0.93, 1.43). Statistical power was limited for JAK2 and TP53 analyses. CONCLUSIONS: CHIP was associated with higher incidence of T2D. CHIP mutations located on genes implicated in CHD and mortality were also related to T2D, suggesting shared aging-related pathology.


Assuntos
Doença das Coronárias , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Hematopoiese Clonal/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudos Prospectivos , Hematopoese/genética , Evolução Clonal , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Mutação
4.
Ann Hum Genet ; 87(4): 174-183, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009668

RESUMO

INTRODUCTION: Observational studies have shown that body mass index (BMI) and waist-to-hip ratio (WHR) are both inversely associated with lung function, as assessed by forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). However, observational data are susceptible to confounding and reverse causation. METHODS: We selected genetic instruments based on their relevant large-scale genome-wide association studies. Summary statistics of lung function and asthma came from the UK Biobank and SpiroMeta Consortium meta-analysis (n = 400,102). After examining pleiotropy and removing outliers, we applied inverse-variance weighting to estimate the causal association of BMI and BMI-adjusted WHR (WHRadjBMI) with FVC, FEV1, FEV1/FVC, and asthma. Sensitivity analyses were performed using weighted median, MR-Egger, and MRlap methods. RESULTS: We found that BMI was inversely associated with FVC (effect estimate, -0.167; 95% confidence interval (CI), -0.203 to -0.130) and FEV1 (effect estimate, -0.111; 95%CI, -0.149 to -0.074). Higher BMI was associated with higher FEV1/FVC (effect estimate, 0.079; 95%CI, 0.049 to 0.110) but was not significantly associated with asthma. WHRadjBMI was inversely associated with FVC (effect estimate, -0.132; 95%CI, -0.180 to -0.084) but has no significant association with FEV1. Higher WHR was associated with higher FEV1/FVC (effect estimate, 0.181; 95%CI, 0.130 to 0.232) and with increased risk of asthma (effect estimate, 0.027; 95%CI, 0.001 to 0.053). CONCLUSION: We found significant evidence that increased BMI is suggested to be causally related to decreased FVC and FEV1, and increased BMI-adjusted WHR could lead to lower FVC value and higher risk of asthma. Higher BMI and BMI-adjusted WHR were suggested to be causally associated with higher FEV1/FVC.


Assuntos
Asma , Pulmão , Humanos , Asma/genética , Índice de Massa Corporal , Volume Expiratório Forçado , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade/genética
5.
Nat Genet ; 55(1): 154-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564505

RESUMO

Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Sequenciamento do Exoma , Fenótipo , Lipídeos/genética
6.
Nat Methods ; 19(12): 1599-1611, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36303018

RESUMO

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Fenótipo , Variação Genética
7.
Cell Genom ; 2(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36119389

RESUMO

How race, ethnicity, and ancestry are used in genomic research has wide-ranging implications for how research is translated into clinical care and incorporated into public understanding. Correlation between race and genetic ancestry contributes to unresolved complexity for the scientific community, as illustrated by heterogeneous definitions and applications of these variables. Here, we offer commentary and recommendations on the use of race, ethnicity, and ancestry across the arc of genetic research, including data harmonization, analysis, and reporting. While informed by our experiences as researchers affiliated with the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, these recommendations are applicable to basic and translational genomic research in diverse populations with genome-wide data. Moving forward, considerable collaborative effort will be required to ensure that race, ethnicity, and ancestry are described and used appropriately to generate scientific knowledge that yields broad and equitable benefit.

8.
Nat Hum Behav ; 6(11): 1577-1586, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35927319

RESUMO

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Fumar/genética
9.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385699

RESUMO

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologia
10.
Commun Biol ; 5(1): 336, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396452

RESUMO

Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10-8. We additionally detected 14 novel loci at P < 5 × 10-7, specific to either Europeans or African Americans. Using whole-exome sequence data in 2,279 European participants, we identified ten genes associated with circulating total-tau when aggregating rare variants. Our genetic study sheds light on genes reported to be associated with neurological diseases including stroke, Alzheimer's, and Parkinson's (F5, MAP1B, and BCAS3), with Alzheimer's pathological hallmarks (ADAMTS12, IL15, and FHIT), or with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and suggests that the genetic architecture of circulating total-tau may differ according to ancestry.


Assuntos
Doença de Alzheimer , Tauopatias , Negro ou Afro-Americano/genética , Doença de Alzheimer/genética , Exoma , Estudo de Associação Genômica Ampla , Humanos
11.
Eur J Hum Genet ; 30(6): 730-739, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35314805

RESUMO

The role and biological significance of gene-environment interactions in human traits and diseases remain poorly understood. To address these questions, the CHARGE Gene-Lifestyle Interactions Working Group conducted series of genome-wide interaction studies (GWIS) involving up to 610,475 individuals across four ancestries for three lipids and four blood pressure traits, while accounting for interaction effects with drinking and smoking exposures. Here we used GWIS summary statistics from these studies to decipher potential differences in genetic associations and G×E interactions across phenotype-exposure-ancestry combinations, and to derive insights on the potential mechanistic underlying G×E through in-silico functional analyses. Our analyses show first that interaction effects likely contribute to the commonly reported ancestry-specific genetic effect in complex traits, and second, that some phenotype-exposures pairs are more likely to benefit from a greater detection power when accounting for interactions. It also highlighted modest correlation between marginal and interaction effects, providing material for future methodological development and biological discussions. We also estimated contributions to phenotypic variance, including in particular the genetic heritability conditional on the exposure, and heritability partitioned across a range of functional annotations and cell types. In these analyses, we found multiple instances of potential heterogeneity of functional partitions between exposed and unexposed individuals, providing new evidence for likely exposure-specific genetic pathways. Finally, along this work, we identified potential biases in methods used to jointly meta-analyze genetic and interaction effects. We performed simulations to characterize these limitations and to provide the community with guidelines for future G×E studies.


Assuntos
Interação Gene-Ambiente , Herança Multifatorial , Epistasia Genética , Estudo de Associação Genômica Ampla , Genômica , Humanos , Estilo de Vida , Fenótipo
12.
Nat Genet ; 54(3): 263-273, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256806

RESUMO

Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Alelos , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
13.
Environ Health Perspect ; 130(2): 27009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167327

RESUMO

BACKGROUND: Communities with lower socioeconomic status and higher prevalence of racial/ethnic minority populations are often more exposed to environmental pollutants. Although studies have shown associations between aircraft noise and property values and various health outcomes, little is known about how aircraft noise exposures are sociodemographically patterned. OBJECTIVE: Our aim was to describe characteristics of populations exposed to aviation noise by race/ethnicity, education, and income in the United States. METHODS: Aircraft noise contours characterized as day-night average sound level (DNL) were developed for 90 U.S. airports in 2010 for DNL ≥45 dB(A) in 1-dB(A) increments. We compared characteristics of exposed U.S. Census block groups at three thresholds (≥45, ≥55, and ≥65 dB(A)), assigned on the basis of the block group land area being ≥50% within the threshold, vs. unexposed block groups near study airports. Comparisons were made across block group race/ethnicity, education, and income categories within the study areas (n=4,031-74,253). We performed both multinomial and other various multivariable regression approaches, including models controlling for airport and models with random intercepts specifying within-airport effects and adjusting for airport-level means. RESULTS: Aggregated across multiple airports, block groups with a higher Hispanic population had higher odds of being exposed to aircraft noise. For example, the multinomial analysis showed that a 10-percentage point increase in a block group's Hispanic population was associated with an increased odds ratio of 39% (95% CI: 25%, 54%) of being exposed to ≥65 dB(A) compared with block groups exposed to <45 dB(A). Block groups with higher proportions of residents with only a high school education had higher odds of being exposed to aircraft noise. Results were robust across multiple regression approaches; however, there was substantial heterogeneity across airports. DISCUSSION: These results suggest that across U.S. airports, there is indication of sociodemographic disparities in noise exposures. https://doi.org/10.1289/EHP9307.


Assuntos
Ruído dos Transportes , Aeronaves , Aeroportos , Exposição Ambiental , Etnicidade , Humanos , Grupos Minoritários , Ruído dos Transportes/efeitos adversos , Estados Unidos
14.
BMC Genomics ; 23(1): 148, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183128

RESUMO

BACKGROUND: While large genome-wide association studies have identified nearly one thousand loci associated with variation in blood pressure, rare variant identification is still a challenge. In family-based cohorts, genome-wide linkage scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African American families from the Trans-Omics for Precision Medicine (TOPMed) program. Genetic association analyses weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries. RESULTS: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pressure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in UK Biobank samples (N = 403,522), and reached genome-wide significance for diastolic blood pressure (p = 2.01 × 10- 7). CONCLUSIONS: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates that focusing association analyses in linkage regions greatly reduces multiple-testing burden and improves power to identify novel rare variants associated with blood pressure traits.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Pressão Sanguínea/genética , Ligação Genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
15.
Blood ; 139(3): 357-368, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855941

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/etiologia , Fatores de Risco , Fumar/efeitos adversos , Sequenciamento do Exoma
16.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932938

RESUMO

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Assuntos
Exoma , Variação Genética , Estudo de Associação Genômica Ampla , Lipídeos/sangue , Fases de Leitura Aberta , Alelos , Glicemia/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
HGG Adv ; 2(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34734193

RESUMO

Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p value <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A, PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5, CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.

18.
HGG Adv ; 2(3)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34337551

RESUMO

Whole-genome sequencing (WGS) and whole-exome sequencing studies have become increasingly available and are being used to identify rare genetic variants associated with health and disease outcomes. Investigators routinely use mixed models to account for genetic relatedness or other clustering variables (e.g., family or household) when testing genetic associations. However, no existing tests of the association of a rare variant with a binary outcome in the presence of correlated data control the type 1 error where there are (1) few individuals harboring the rare allele, (2) a small proportion of cases relative to controls, and (3) covariates to adjust for. Here, we address all three issues in developing a framework for testing rare variant association with a binary trait in individuals harboring at least one risk allele. In this framework, we estimate outcome probabilities under the null hypothesis and then use them, within the individuals with at least one risk allele, to test variant associations. We extend the BinomiRare test, which was previously proposed for independent observations, and develop the Conway-Maxwell-Poisson (CMP) test and study their properties in simulations. We show that the BinomiRare test always controls the type 1 error, while the CMP test sometimes does not. We then use the BinomiRare test to test the association of rare genetic variants in target genes with small-vessel disease (SVD) stroke, short sleep, and venous thromboembolism (VTE), in whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program.

19.
Genome Med ; 13(1): 136, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446064

RESUMO

BACKGROUND: Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. METHODS: The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. RESULTS: We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. CONCLUSIONS: We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/etiologia , Sequenciamento Completo do Genoma , Alelos , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão/métodos , Pesquisa , Transdução de Sinais , Síndromes da Apneia do Sono/metabolismo , Estados Unidos
20.
Hum Mol Genet ; 31(1): 32-40, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34302344

RESUMO

Genome-wide association studies (GWASs) have successfully identified loci of the human genome implicated in numerous complex traits. However, the limitations of this study design make it difficult to identify specific causal variants or biological mechanisms of association. We propose a novel method, AnnoRE, which uses GWAS summary statistics, local correlation structure among genotypes and functional annotation from external databases to prioritize the most plausible causal single-nucleotide polymorphisms (SNPs) in each trait-associated locus. Our proposed method improves upon previous fine-mapping approaches by estimating the effects of functional annotation from genome-wide summary statistics, allowing for the inclusion of many annotation categories. By implementing a multiple regression model with differential shrinkage via random effects, we avoid reductive assumptions on the number of causal SNPs per locus. Application of this method to a large GWAS meta-analysis of body mass index identified six loci with significant evidence in favor of one or more variants. In an additional 24 loci, one or two variants were strongly prioritized over others in the region. The use of functional annotation in genetic fine-mapping studies helps to distinguish between variants in high LD and to identify promising targets for follow-up studies.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA