Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Clinics (Sao Paulo) ; 77: 100082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882106

RESUMO

BACKGROUND: Mucopolysaccharidosis type II, also known as Hunter syndrome, is a rare X-linked recessive disorder caused by deficiency of the lysosomal enzyme Iduronate-2- Sulfatase (IDS), leading to progressive accumulation of Glycosaminoglycans (GAGs) in several organs. Over the years, Enzyme Replacement Therapy (ERT) has provided significant benefits for patients, retarding the natural progression of the disease. RESULTS: The authors evaluated 17 patients from the same family with a mild form of MPS type II; the proband had developed acute decompensated heart failure refractory to clinical measurements at 23 years and needed a rather urgent heart transplant; however, he died from surgical complications shortly after the procedure. Nevertheless, subsequent to his tragic death, 16 affected male relatives were detected after biochemical tests identifying the low or absent activity of the IDS enzyme and confirmed by molecular analysis of the IDS gene. Following diagnosis, different options of treatment were chosen: 6 patients started ERT with Elaprase® (Idursulfase) soon after, while the other 10 remained without ERT. Eventually, 4 patients in the latter group began ERT with Hunterase® (Idursulfase Beta). None presented adverse effects to either form of the enzyme. Among the 6 individuals without any ERT, two died of natural causes, after reaching 70 years. Despite the variable phenotype within the same family (mainly heart dysfunctions and carpal tunnel syndrome), all 14 remaining patients were alive with an independent lifestyle. CONCLUSION: Here, the authors report the variable progress of the disease with and without ERT in a large Brazilian family with a slowly progressive form of MPS II, harboring the same missense variant in the IDS gene.


Assuntos
Mucopolissacaridose II , Brasil , Terapia de Reposição de Enzimas , Seguimentos , Humanos , Masculino
2.
Clinics ; 77: 100082, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1404298

RESUMO

Abstract Background: Mucopolysaccharidosis type II, also known as Hunter syndrome, is a rare X-linked recessive disorder caused by deficiency of the lysosomal enzyme Iduronate-2- Sulfatase (IDS), leading to progressive accumulation of Glycosaminoglycans (GAGs) in several organs. Over the years, Enzyme Replacement Therapy (ERT) has provided significant benefits for patients, retarding the natural progression of the disease. Results: The authors evaluated 17 patients from the same family with a mild form of MPS type II; the proband had developed acute decompensated heart failure refractory to clinical measurements at 23 years and needed a rather urgent heart transplant; however, he died from surgical complications shortly after the procedure. Nevertheless, subsequent to his tragic death, 16 affected male relatives were detected after biochemical tests identifying the low or absent activity of the IDS enzyme and confirmed by molecular analysis of the IDS gene. Following diagnosis, different options of treatment were chosen: 6 patients started ERT with Elaprase® (Idursulfase) soon after, while the other 10 remained without ERT. Eventually, 4 patients in the latter group began ERT with Hunterase® (Idursulfase Beta). None presented adverse effects to either form of the enzyme. Among the 6 individuals without any ERT, two died of natural causes, after reaching 70 years. Despite the variable phenotype within the same family (mainly heart dysfunctions and carpal tunnel syndrome), all 14 remaining patients were alive with an independent lifestyle. Conclusion: Here, the authors report the variable progress of the disease with and without ERT in a large Brazilian family with a slowly progressive form of MPS II, harboring the same missense variant in the IDS gene.

3.
Genet Mol Biol ; 43(2): e20180271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478789

RESUMO

Leigh syndrome is an early onset progressive disorder caused by defects in mitochondrial oxidative phosphorylation. Pathogenic variants in nuclear and mitochondrial genes are associated with the syndrome. Homozygous pathogenic variants in the C12orf65 gene impair the mitochondrial oxidative phosphorylation system. We describe a new case of Leigh syndrome caused by a novel pathogenic variant of the C12orf65 gene resulting in the lack of the Gly-Gly-Gln (GGQ) domain in the predicted protein, and review clinical and molecular data from previously reported patients. Our study supports that the phenotype caused by C12orf65 gene variants is heterogeneous and varies from spastic paraparesis to Leigh syndrome. Loss-of-function variants are more likely to cause the disease, and variants affecting the GGQ domain tend to be associated with more severe phenotypes, reinforcing a possible genotype-phenotype correlation.

4.
Front Genet ; 10: 1383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32256517

RESUMO

RATIONALE: Mucopolysaccharidosis type II (Hunter syndrome) is an X-linked multisystem disorder, caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase (I2S). The clinical manifestations of this disease are severe skeletal deformities, airway obstruction, cardiomyopathy, and neurologic deterioration. PATIENT: The patient was 5 years and 6 months boy, with developmental delay, hearing loss, hepatosplenomegaly, and skeletal dysplasia. He was diagnosed with mucopolysaccharidosis type II based on clinical manifestations, biochemical and genetic analysis. OUTCOMES: The patient carries a new mutation (c.879-1210_1007-218del) in hemizygosis in the IDS gene, which was defined as pathogenic according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines and as responsible for the mucopolysaccharidosis type II phenotype in the patient.

5.
Case Rep Pediatr ; 2018: 4375434, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527374

RESUMO

Lysosomal acid lipase (LAL) deficiency is an autosomal recessive lysosomal storage disorder caused by mutations in the LIPA gene that leads to premature organ damage and mortality. We present retrospective data from medical records of 5 Brazilian patients, showing the broad clinical spectrum of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA