Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760000

RESUMO

Onion peels (OP) are rich in bioactive compounds with a plethora of benefits for human health, but this valuable material is often wasted and underutilized due to its inedibility. Likewise, grapevine pruning residues are commonly treated as agricultural waste, but biochar (BC) obtained from this material has favorable characteristics as an adsorbent. This study investigated the potential of BC in removal of targeted polyphenolic compounds from OP extracts. The OP extracts were obtained adhering to green chemistry principles using deionized water amplified by three methods: maceration (MAC), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). The extraction efficiency on the polyphenolic profile and antioxidant capacity was investigated with different extraction temperatures and solid-to-liquid (s/l) ratios. For further analysis, UAE at 90 °C with an s/l ratio of 1:100 was used due to higher polyphenolic compound yield. The BC adsorption capacity of individual polyphenols was fitted with the Langmuir and Freundlich isotherm models. Quercetin-3,4'-diglucoside obtained the highest R2 coefficient in both models, and the highest qmax value. The optimum conditions in the dosage experiment suggested an amount of 0.5 g of BC using 3 g/L extracts. The studied BC showed a high affinity for targeted phytochemicals from OP extracts, indicating its potential to be applied for the green adsorption of valuable polyphenolic compounds.

2.
Environ Res ; 237(Pt 1): 116914, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597824

RESUMO

To investigate the influence of high-pressure and shear effects introduced by a concentrated oxygen supply system on the membrane filtration performance, a laboratory-scale membrane bioreactor (MBR) fed artificial municipal wastewater was operated continuously for 80 days in four phases equipped with different aerations systems: (P1) bubble diffusers (days 0-40), (P2) concentrated oxygen supply system, the supersaturated dissolved oxygen (SDOX) (days 41-56), (P3) bubble diffusers (days 57-74), and (P4) SDOX (days 75-80). Various sludge physical-chemical parameters, visual inspection of the membrane, and permeability evaluations were performed. Results showed that the high-pressure effects contributed to fouling of the membranes compared to the bubble diffuser aeration system. Biofouling by microorganisms appeared to be the main contributor to the cake layer when bubble diffusers were used, while fouling by organic matter seemed to be the main contributor to the cake layer when SDOX was used. Small particle size distribution (PSD) (ranging from 1 to 10 and 1-50 µm in size) fractions are a main parameter affecting the intense fouling of membranes (e.g., formation of a dense and thin cake layer). However, PSD alone cannot explain the worsened membrane fouling tendency. Therefore, it can be assumed that a combination of several factors (which certainly includes PSD) led to the severe membrane fouling caused by the high-pressure and shear.

3.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445031

RESUMO

Agricultural waste, which is produced in large quantities annually, can be a threat to the environment. Biochar (BC) production represents a potential solution for reducing the amount of grapevine pruning residues and, accordingly, the impact on the environment and climate change. Biochar produced by the process of pyrolysis from grapevine pruning residues was investigated and characterized to be applied as an adsorbent of polyphenolic compounds with the aim of using the waste from viticultural production to obtain a quality product with adsorption and recovery potential. Standards of caffeic acid (CA), gallic acid (GA), and oleuropein (OLP) were used as polyphenolic representatives. The obtained data were fitted with the Langmuir and Freundlich isotherms models to describe the adsorption process. The best KL (0.39) and R2 (0.9934) were found for OLP using the Langmuir model. Furthermore, the adsorption dynamics and recovery potential of BC were investigated using an adapted BC column and performed on an HPLC instrument. The adsorption dynamics of biochar resulted in the adsorption of 5.73 mg CA g-1 of BC, 3.90 mg GA g-1 of BC, and 3.17 mg OLP g-1 of BC in a 24 h contact. The online solid phase extraction of the compounds performed on an HPLC instrument yielded a recovery of 41.5 ± 1.71% for CA, 61.8 ± 1.16% for GA, and 91.4 ± 2.10% for OLP. The investigated biochar has shown a higher affinity for low-polar compound adsorption and, consequently, a higher polar compound recovery suggesting its potential as an efficient polyphenolic compound adsorbent.

4.
Environ Sci Pollut Res Int ; 30(34): 82601-82612, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37328727

RESUMO

Since aquatic microbial communities promptly respond to environmental changes, it is now evident that they can complement traditional taxa such as fish, macroinvertebrates and algae as bioindicators of water quality. The aim of this study was to correlate the physico-chemical parameters of water with the microbial community structure and the occurrence of putative bioindicator taxa. Thirty-five water samples were collected throughout Croatia and their physico-chemical parameters, including the concentration of trace elements using the high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and the composition of the microbial communities by high-throughput sequencing of the 16S rRNA marker gene, were analysed in parallel. Partial least squares regression (PLS-R) modelling revealed that a number of microbial taxa were positively correlated with some of the water parameters. For example, some taxa from the phylum Proteobacteria were positively correlated with the ion content of the water (e.g. Erythrobacter, Rhodobacteraceae, Alteromonadaceae), while some Firmicutes taxa, such as the well-known faecal indicators Enterococcus and Clostridium, were correlated with nutrient content (ammonium and total phosphorus). Among the trace elements, uranium was positively correlated with a highest number of microbial taxa. The results obtained will aid in development of protocols for eDNA-based biological assessment of water quality.


Assuntos
Microbiota , Oligoelementos , Animais , Biomarcadores Ambientais , Oligoelementos/análise , Croácia , RNA Ribossômico 16S/genética , Bactérias/genética , Água Doce
5.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275621

RESUMO

Given today's increasingly intensive agriculture, one key problem area considers the valorization and reuse of wastes from food and agricultural production with minimal impact on the environment. Due to its physicochemical characteristics, biochar (BC) derived from grapevine pruning residue has shown considerable potential for use as an adsorbent. High-value phytochemicals found in abundance in the olive leaf (OL) can be employed in many different industrial sectors. The potential application of BC in the removal of specific polyphenolic components from OL extracts has been investigated in the present study. Water, as the most available and greenest of solvents, was investigated as to its use in the extraction of polyphenols, which was carried out by comparing maceration, ultrasound-assisted extraction, and microwave-assisted extraction, considering different temperatures and solid-to-liquid (s/l) ratios. The BC adsorption capacity of selected polyphenols was fitted with both the Langmuir and Freundlich isotherm models. The Freundlich model fitted better relative to OL polyphenols adsorption. Oleuropein was the most abundant compound identified in the extracts, obtaining the highest Kf value (20.4 (mg/g) × (L/g)n) and R2 coefficient (0.9715) in the adsorption on the biochar's surface. The optimum conditions in the dosage experiment suggest the use of 0.5 g of BC using 3 g/L extracts, with an exception for oleuropein and hydroxytyrosol, for which the highest biochar dose (2.5 g) performed better. Considering the compounds' concentrations and the BC dose, BC from grapevine pruning residues demonstrated a potential use in the uptake of specific polyphenols from olive leaves, making it a promising adsorbent for such applications.

6.
Sci Rep ; 12(1): 16646, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198674

RESUMO

Saprolegnia parasitica causes saprolegniosis, a disease responsible for significant economic losses in aquaculture and declines of fish populations in the wild, but the knowledge of its distribution and prevalence in the environment is limited. We developed a fast, sensitive and specific S. parasitica droplet digital PCR (ddPCR) assay and demonstrated its applicability for the detection and quantification of the pathogen in environmental samples: swab DNA collected from the host (trout skin, surface of eggs) and environmental DNA extracted from water. The developed assay was used to assess how abiotic (i.e. physico-chemical parameters of the water) and biotic (health status of the host) factors influence the S. parasitica load in the environment. The pathogen load in water samples was positively correlated with some site-specific abiotic parameters such as electrical conductivity (EC) and calcium, while fluorides were negatively correlated, suggesting that physico-chemical parameters are important for determining S. parasitica load in natural waters. Furthermore, skin swabs of injured trout had significantly higher pathogen load than swabs collected from healthy fish, confirming that S. parasitica is a widespread opportunistic pathogen. Our results provide new insights into various environmental factors that influence the distribution and abundance of S. parasitica.


Assuntos
DNA Ambiental , Doenças dos Peixes , Saprolegnia , Animais , Aquicultura , Cálcio , Doenças dos Peixes/epidemiologia , Fluoretos , Saprolegnia/genética , Truta/genética , Água
7.
Environ Monit Assess ; 194(8): 544, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35771393

RESUMO

Bromide in water can form undesirable by-products such as bromate when treated by ozonation during drinking water production. The maximum contaminant level (MCL) for bromate is 10 µg/L in most countries because it is suspected of being carcinogenic. In this paper, the geographical distribution of bromide concentration in Croatian groundwater is presented covering the Pannonian basin and the Dinarides (Adriatic Sea). Groundwater in Croatian wellfields predominantly has a bromide content of less than 50 µg/L and thus belongs to the group with low potential for bromate formation. Waters with higher bromide concentrations were found mainly in the coastal regions of Croatia, probably due to seawater intrusion. In addition, bromide concentration showed a positive correlation of 0.6 with conductivity, chloride, and sodium. In addition, the potential of 123 groundwaters analyzed in this study to form bromate when treated with ozone was evaluated using models available in the literature. Analysis of water from Croatian wellfields indicated that the potential for bromate formation above the MCL during ozonation was relatively low. The models used from the literature predicted quite different values of bromate concentration when applied to the same water, with some values exceeding those theoretically possible. Selected models may be useful as a general warning of possible bromate formation.


Assuntos
Água Potável , Água Subterrânea , Ozônio , Poluentes Químicos da Água , Purificação da Água , Bromatos/análise , Brometos/análise , Croácia , Água Potável/análise , Monitoramento Ambiental , Ozônio/análise , Poluentes Químicos da Água/análise
8.
Microorganisms ; 10(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35336096

RESUMO

Oomycete pathogens in freshwaters, such as Saprolegnia parasitica and Aphanomyces astaci, are responsible for fish/crayfish population declines in the wild and disease outbreaks in aquaculture. Although the formation of infectious zoospores in the laboratory can be triggered by washing their mycelium with natural water samples, the physico-chemical properties of the water that might promote sporulation are still unexplored. We washed the mycelia of A. astaci and S. parasitica with a range of natural water samples and observed differences in sporulation efficiency. The results of Partial Least Squares Regression (PLS-R) multivariate analysis showed that SAC (spectral absorption coefficient measured at 254 nm), DOC (dissolved organic carbon), ammonium-N and fluoride had the strongest positive effect on sporulation of S. parasitica, while sporulation of A. astaci was not significantly correlated with any of the analyzed parameters. In agreement with this, the addition of environmentally relevant concentrations of humic acid, an important contributor to SAC and DOC, to the water induced sporulation of S. parasitica but not of A. astaci. Overall, our results point to the differences in ecological requirements of these pathogens, but also present a starting point for optimizing laboratory protocols for the induction of sporulation.

9.
Sci Total Environ ; 771: 144847, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548701

RESUMO

Conventional diffused aeration systems (such as fine-bubble diffusers) exhibit a poor oxygen transfer in wastewater treatment plants (WWTPs), particularly when operating at sludge concentrations higher than 15 g L-1. The supersaturated dissolved oxygen (SDOX) system has been proposed as an alternative for supplying dissolved oxygen (DO) at high mixed liquor suspended solids (MLSS) concentrations. The advantages introduced by such technology include the possibility of operating WWTPs at much higher than usual MLSS concentrations, increasing the treatment capacity of WWTPs. Recent studies have demonstrated that the SDOX system has higher oxygen transfer rates (OTRs) and oxygen transfer efficiencies (OTEs) relative to fine-bubble diffusers. However, it is unknown if the high-pressure conditions introduced by SDOX may possibly impact the biological performance of WWTPs. In this study, the effects of SDOX technology on the biological performance of a membrane bioreactor (MBR) were evaluated. The MBR was operated at an MLSS concentration of approximately 15 g L-1 in four phases as follows: (P1) with bubble diffusers, (P2) with an SDOX unit, (P3) with the bubble diffusers, and (P4) with the SDOX unit. The performance of the MBR was assessed by monitoring the sludge concentration, as well as changes in the particle size distribution (PSD), sludge activity, organic matter removal and nitrification performance, and changes in the microbial community within the MBR. The operational conditions exerted by the SDOX technology did not affect the concentration of active biomass during the study period. The biological performance of the MBR was not affected by the introduction of the SDOX technology. Finally, the microbial community was relatively stable although some variations at the family and genus level were evident during each of the study phases. Therefore, the SDOX system can be proposed as an alternative technology for DO supply in WWTPs increasing the overall treatment capacity.


Assuntos
Oxigênio , Eliminação de Resíduos Líquidos , Reatores Biológicos , Membranas Artificiais , Dinâmica Populacional , Esgotos
10.
Chemosphere ; 272: 129899, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534969

RESUMO

The use of near-infrared (NIR) spectroscopy in wastewater treatment has continuously expanded. As an alternative to conventional analytical methods for monitoring constituents in wastewater treatment processes, the use of NIR spectroscopy is considered to be cost-effective and less time-consuming. NIR spectroscopy does not distort the measured sample in any way as no prior treatment is required, making it a waste-free technique. On the negative side, one has to be very well versed with chemometric techniques to interpret the results. In this study, filtered and centrifuged wastewater and sludge samples from a lab-scale membrane bioreactor (MBR) were analysed. Two analytical methods (conventional and NIR spectroscopy) were used to determine and compare major wastewater constituents. Particular attention was paid to soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) known to promote membrane fouling. The parameters measured by NIR spectroscopy were analysed and processed with partial least squares regression (PLSR) and artificial neural networks (ANN) models to assess whether the evaluated wastewater constituents can be monitored by NIR spectroscopy. Very good results were obtained with PLSR models, except for the determination of SMP, making the model qualitative rather than quantitative for their monitoring. ANN showed better performance in terms of correlation of NIR spectra with all measured parameters, resulting in correlation coefficients higher than 0.97 for training, testing, and validation in most cases. Based on the results of this research, the combination of NIR spectra and chemometric modelling offers advantages over conventional analytical methods.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Águas Residuárias , Reatores Biológicos , Membranas Artificiais , Esgotos/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Águas Residuárias/química
11.
Environ Sci Pollut Res Int ; 26(33): 34285-34300, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30737715

RESUMO

The operation of membrane bioreactors (MBRs) at higher than usual mixed liquor suspended solids (MLSS) concentrations may enhance the loading rate treatment capacity while minimizing even further the system's footprint. This requires operating the MBR at the highest possible MLSS concentration and biomass activity (e.g., at high loading rates and low solid retention times (SRTs)). Both a negative effect of the MLSS concentrations and a positive effect of the SRT on the oxygen transfer have been reported when using conventional fine bubble diffusers. However, most of the evaluations have been carried out either at extremely high SRTs or at low MLSS concentrations eventually underestimating the effects of the MLSS concentration on the oxygen transfer. This research evaluated the current limitations imposed by fine bubble diffusers in the context of the high-loaded MBR (HL-MBR) (i.e., high MLSS and short SRT-the latter emulated by concentrating municipal sludge from a wastewater treatment plant (WWTP) operated at a short SRT of approximately 5 days). The high MLSS concentrations and the short SRT of the original municipal sludge induced a large fraction of mixed liquor volatile suspended solids (MLVSS) in the sludge, promoting a large amount of sludge flocs that eventually accumulated on the surface of the bubbles and reduced the free water content of the suspension. Moreover, the short SRTs at which the original municipal sludge was obtained eventually appear to have promoted the accumulation of surfactants in the sludge mixture. This combination exhibited a detrimental effect on the oxygen transfer. Fine bubble diffusers limit the maximum MLSS concentration for a HL-MBR at 30 g L-1; beyond that point is either not technically or not economically feasible to operate; an optimum MLSS concentration of 20 g L-1 is suggested to maximize the treatment capacity while minimizing the system's footprint.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Biomassa , Difusão , Membranas Artificiais , Oxigênio , Esgotos , Águas Residuárias
12.
Food Technol Biotechnol ; 54(2): 250-255, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27904416

RESUMO

The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V) from water: Bayoxide® E33 (granular iron(III) oxide), Titansorb® (granular titanium oxide) and a suspension of precipitated iron(III) hydroxide. Results of As(V) adsorption stoichiometry of two commercial adsorbents and precipitated iron(III) hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III) hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V). Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III) hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V) from water.

13.
Int J Environ Health Res ; 26(5-6): 536-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27666295

RESUMO

Ultraviolet germicidal (short wavelength UV-C) light was studied as surface disinfectant in an Emergency Sanitation Operation System(®) smart toilet to aid to the work of manual cleaning. The UV-C light was installed and regulated as a self-cleaning feature of the toilet, which automatically irradiate after each toilet use. Two experimental phases were conducted i.e. preparatory phase consists of tests under laboratory conditions and field testing phase. The laboratory UV test indicated that irradiation for 10 min with medium-low intensity of 0.15-0.4 W/m(2) could achieve 6.5 log removal of Escherichia coli. Field testing of the toilet under real usage found that UV-C irradiation was capable to inactivate total coliform at toilet surfaces within 167-cm distance from the UV-C lamp (UV-C dose between 1.88 and 2.74 mW). UV-C irradiation is most effective with the support of effective manual cleaning. Application of UV-C for surface disinfection in emergency toilets could potentially reduce public health risks.


Assuntos
Desinfetantes/farmacologia , Desinfecção/normas , Banheiros , Raios Ultravioleta , Escherichia coli/efeitos da radiação , Filipinas
14.
J Hazard Mater ; 192(1): 319-28, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21641718

RESUMO

Removal of numerous classes of pharmaceuticals from the municipal and industrial wastewater, using conventional wastewater treatment, is incomplete and several studies suggested that improvement of this situation would require the application of advanced treatment techniques. This is particularly important for the treatment of industrial effluents, released from pharmaceutical industries, which can contain rather high concentrations of antimicrobials. The aim of this work was to evaluate membrane bioreactors (MBRs), nanofiltration, reverse osmosis and ozonation, as well as their combinations, for the removal of antimicrobials from a synthetic wastewater which simulated highly contaminated industrial effluents. The study was performed using a mixture of four important classes of antimicrobials, including sulfonamides (SA), fluoroquinolones (FQ), macrolides (MAC) and trimethoprim (TMP). Performance of two different types of MBRs, Kubota and Zenon, was evaluated under different regimes regarding hydraulic retention time, total organic load and total nitrogen load. It was shown that elimination of SA in MBR treatment was very efficient, while the elimination of MAC, FQ, and TMP was incomplete. A mass balance of these contaminants in MBR suggested that microbial transformation represented the main mechanism, while only a small percentage was eliminated from the aqueous phase by adsorption onto sludge particles. Nanofiltration and reverse osmosis achieved high elimination rates however produced highly contaminated concentrate. High removal was achieved using ozonation, but further research is needed to characterize formed ozonation products.


Assuntos
Anti-Infecciosos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Osmose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA