Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Acta Biomater ; 181: 46-66, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697381

RESUMO

Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.


Assuntos
Bioimpressão , Músculo Esquelético , Impressão Tridimensional , Regeneração , Humanos , Músculo Esquelético/fisiologia , Bioimpressão/métodos , Animais , Alicerces Teciduais/química , Engenharia Tecidual/métodos
2.
Nat Ecol Evol ; 8(6): 1140-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622362

RESUMO

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.


Assuntos
Evolução Molecular , Insetos , Vertebrados , Animais , Insetos/genética , Vertebrados/genética , Especificidade de Órgãos , Transcriptoma , Filogenia
3.
JCI Insight ; 9(8)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530354

RESUMO

Skeletal muscle wasting results from numerous pathological conditions affecting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role of E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss-of-function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 resulted in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fiber integrity. We further implicated a disruption in atrogin-1-mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We revealed that BiP was not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorated pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicate atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy and highlight atrogin-1's essential role in maintaining muscle homeostasis.


Assuntos
Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Homeostase , Proteínas Musculares , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteínas Ligases SKP Culina F-Box , Peixe-Zebra , Animais , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Humanos , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Retículo Endoplasmático/metabolismo , Dinâmica Mitocondrial
4.
Artigo em Inglês | MEDLINE | ID: mdl-38367020

RESUMO

Ageing is the greatest risk factor for a multitude of age-related diseases including sarcopenia -the loss of skeletal muscle mass and strength - which occurs at remarkable rates each year. There is an unmet need not only to understand the mechanisms that drive sarcopenia, but also to identify novel therapeutic strategies. Given the ease and affordability of husbandry, along with advances in genomics, genome editing technologies and imaging capabilities, teleost models are increasingly used for ageing and sarcopenia research. Here, we explain how teleost species such as zebrafish, African turquoise killifish and medaka recapitulate many of the classical hallmarks of sarcopenia, and discuss the various dietary, pharmacological and genetic approaches that have been used in teleosts to understand the mechanistic basis of sarcopenia.

5.
Dis Model Mech ; 17(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235578

RESUMO

Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/fisiologia , Qualidade de Vida , Modelos Animais de Doenças , Doenças Musculares/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Músculos
6.
Aging Cell ; 23(1): e13862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37183563

RESUMO

Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.


Assuntos
Longevidade , Sarcopenia , Animais , Sarcopenia/metabolismo , Sirtuína 1/metabolismo , Envelhecimento , Músculo Esquelético/metabolismo , Fundulus heteroclitus , Vertebrados , Biologia
7.
J Cardiovasc Dev Dis ; 10(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37887855

RESUMO

Dilated cardiomyopathy (DCM) is a common heart muscle disorder that frequently leads to heart failure, arrhythmias, and death. While DCM is often heritable, disease-causing mutations are identified in only ~30% of cases. In a forward genetic mutagenesis screen, we identified a novel zebrafish mutant, heart and head (hahvcc43), characterized by early-onset cardiomyopathy and craniofacial defects. Linkage analysis and next-generation sequencing identified a nonsense variant in the highly conserved scfd1 gene, also known as sly1, that encodes sec1 family domain-containing 1. Sec1/Munc18 proteins, such as Scfd1, are involved in membrane fusion regulating endoplasmic reticulum (ER)/Golgi transport. CRISPR/Cas9-engineered scfd1vcc44 null mutants showed severe cardiac and craniofacial defects and embryonic lethality that recapitulated the phenotype of hahvcc43 mutants. Electron micrographs of scfd1-depleted cardiomyocytes showed reduced myofibril width and sarcomere density, as well as reticular network disorganization and fragmentation of Golgi stacks. Furthermore, quantitative PCR analysis showed upregulation of ER stress response and apoptosis markers. Both heterozygous hahvcc43 mutants and scfd1vcc44 mutants survived to adulthood, showing chamber dilation and reduced ventricular contraction. Collectively, our data implicate scfd1 loss-of-function as the genetic defect at the hahvcc43 locus and provide new insights into the role of scfd1 in cardiac development and function.

8.
Nat Commun ; 14(1): 6628, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857613

RESUMO

Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.


Assuntos
Taxa de Mutação , Tubarões , Animais , Tubarões/genética , Ecossistema
9.
Adv Sci (Weinh) ; 10(28): e2300989, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552005

RESUMO

Studies in recent years have highlighted an elaborate crosstalk between T cells and bone cells, suggesting that T cells may be alternative therapeutic targets for the maintenance of bone homeostasis. Here, it is reported that systemic administration of low-dose staphylococcal enterotoxin C2 (SEC2) 2M-118, a form of mutant superantigen, dramatically alleviates ovariectomy (OVX)-induced bone loss via modulating T cells. Specially, SEC2 2M-118 treatment increases trabecular bone mass significantly via promoting bone formation in OVX mice. These beneficial effects are largely diminished in T-cell-deficient nude mice and can be rescued by T-cell reconstruction. Neutralizing assays determine interferon gamma (IFN-γ) as the key factor that mediates the beneficial effects of SEC2 2M-118 on bone. Mechanistic studies demonstrate that IFN-γ stimulates Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, leading to enhanced production of nitric oxide, which further activates p38 mitogen-activated protein kinase (MAPK) and Runt-related transcription factor 2 (Runx2) signaling and promotes osteogenic differentiation. IFN-γ also directly inhibits osteoclast differentiation, but this effect is counteracted by proabsorptive factors tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) secreted from IFN-γ-stimulated macrophages. Taken together, this work provides clues for developing innovative approaches which target T cells for the prevention and treatment of osteoporosis.

10.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315523

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Células-Tronco , Antivirais/farmacologia , Antivirais/uso terapêutico , Pulmão
11.
Nature ; 618(7965): 543-549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225983

RESUMO

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Mesoderma , Peixe-Zebra , Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Mesoderma/anatomia & histologia , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Morfogenéticas Ósseas/metabolismo
12.
Science ; 380(6645): eadg3748, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167391

RESUMO

Jensen et al. (1) question evidence presented of a chambered heart within placoderms, citing its small size and apparently ventral atrium. However, they fail to note the belly-up orientation of the placoderm within one nodule, and the variability of heart morphology within extant taxa. Thus, we remain confident in our interpretation of the mineralized organ as the heart.


Assuntos
Evolução Biológica , Fósseis , Coração , Preservação Biológica , Animais , Peixes/fisiologia
13.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102706

RESUMO

The cells of the innate immune system are the sentinels of tissue homeostasis, acting as 'first responders' to cellular damage and infection. Although the complex interplay of different immune cells during the initial inflammatory phases of infection and repair has been documented over many decades, recent studies have begun to define a more direct role for specific immune cells in the modulation of tissue repair. One particular cell of the innate immune system, the macrophage, has emerged as a central integrator of the complex molecular processes that drive tissue repair and, in some cases, the development of specific cell types. Although macrophages display directed orchestration of stem cell activities, bidirectional cellular crosstalk mechanisms allow stem cells to regulate macrophage behaviour within their niche, thus increasing the complexity of niche regulation and control. In this Review, we characterize the roles of macrophage subtypes in individual regenerative and developmental processes and illustrate the surprisingly direct role for immune cells in coordinating stem cell formation and activation.


Assuntos
Macrófagos , Nicho de Células-Tronco , Nicho de Células-Tronco/fisiologia , Macrófagos/metabolismo , Células-Tronco
14.
J Ophthalmic Vis Res ; 18(1): 60-67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937198

RESUMO

Purpose: Mutations in TCP-1 ring complex (TRiC) have been associated with Leber Congenital Amaurosis (LCA). TRiC is involved in protein folding and has 8 essential subunits including CCT5. Herein, we studied the retina of TRiC mutant zebrafish to evaluate the possible role of impaired actin and tubulin folding in LCA. Methods: The cct5 t f 212 b retina was histologically studied using Toluidine Blue staining as well as TUNEL, BrdU-labeling, and Phalloidin assays. Retinal organisation was assessed by quantification of the cellularity utilising DAPI. Results: Laminar organization of cct5 t f 212 b retinas was intact. Enhanced apoptosis throughout the cct5 t f 212 b retina was not compensated by higher proliferation rates, leaving the cct5 t f 212 b retina smaller in size. Quantification of retinal layer cellularity demonstrated that specifically the numbers of the amacrine and the retinal ganglion cells were depleted, suggesting that the cct5 t f 212 b retina was not uniformly affected by the reduced actin folding. Conclusion: Whereas the current literature suggests that LCA is predominantly affecting retinal photoreceptor cells and the retinal pigment epithelium, cct5 t f 212 b analyses demonstrated the important role of folding of actin by TRiC, suggesting that cct5 t f 212 b is a useful tool to specifically analyze the role of F-actin filaments in the context of LCA.

15.
Trends Genet ; 39(5): 358-380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842901

RESUMO

Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco , Evolução Biológica , Células Clonais/patologia
16.
Heliyon ; 8(10): e11093, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36281397

RESUMO

Acute myeloid leukemia (AML) is one of the most prevalent and acute blood cancers with a poor prognosis and low overall survival rate, especially in the elderly. Although several new AML markers and drug targets have been recently identified, the rate of long-term cancer eradication has not improved significantly due to the presence and drug resistance of AML cancer stem cells (CSCs). Here we develop a novel computational pipeline to analyze the transcriptomic profiles of AML cancer (stem) cells and identify novel candidate AML CSC markers and drug targets. In our novel pipeline we apply a top-down meta-analysis strategy to integrate The Cancer Genome Atlas data with CSC datasets to infer cell stemness features. As a result, a set of genes termed the "AML key CSC genes" along with all the available drugs/compounds that could target them were identified. Overall, our novel computational pipeline could retrieve known cancer drugs (Carfilzomib) and predicted novel drugs such as Zonisamide, Amitriptyline, and their targets amongst the top ranked drugs and drug targets for targeting AML. Additionally, the pipeline applied in this study could be used for the identification of CSC-specific markers, drivers and their respective targeting drugs in other cancer types.

17.
bioRxiv ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36172136

RESUMO

SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems. One-sentence summary: Rational treatment strategies for SARS-CoV-2 derived from human PSC models.

18.
Science ; 377(6612): 1311-1314, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107996

RESUMO

The origin and early diversification of jawed vertebrates involved major changes to skeletal and soft anatomy. Skeletal transformations can be examined directly by studying fossil stem gnathostomes; however, preservation of soft anatomy is rare. We describe the only known example of a three-dimensionally mineralized heart, thick-walled stomach, and bilobed liver from arthrodire placoderms, stem gnathostomes from the Late Devonian Gogo Formation in Western Australia. The application of synchrotron and neutron microtomography to this material shows evidence of a flat S-shaped heart, which is well separated from the liver and other abdominal organs, and the absence of lungs. Arthrodires thus show the earliest phylogenetic evidence for repositioning of the gnathostome heart associated with the evolution of the complex neck region in jawed vertebrates.


Assuntos
Evolução Biológica , Peixes-Gato , Fósseis , Animais , Peixes-Gato/anatomia & histologia , Peixes-Gato/classificação , Arcada Osseodentária/anatomia & histologia , Filogenia , Austrália Ocidental
19.
PLoS Genet ; 18(6): e1010287, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737712

RESUMO

Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4. In Drosophila, mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.


Assuntos
Miofibrilas , Peixe-Zebra , Actinas/genética , Actinas/metabolismo , Animais , Chaperoninas/metabolismo , Microtúbulos/genética , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Peixe-Zebra/genética
20.
Bioessays ; 44(5): e2100270, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229908

RESUMO

The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.


Assuntos
Fibronectinas , Distrofias Musculares , Distroglicanas/genética , Distroglicanas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosilação , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mutação , Pentosiltransferases/genética , Pentosiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA