Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 49: 104-112, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28007165

RESUMO

Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50mg/L As and As3mt-KO mice that cannot tolerate 50mg/L As were exposed to 0, 15, 20, 25 or 30mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%-68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure.


Assuntos
Arsênio/toxicidade , Arsenicais/farmacologia , Poluentes Químicos da Água/toxicidade , Animais , Masculino , Metiltransferases , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
2.
PLoS One ; 11(5): e0155875, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195669

RESUMO

Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk assessment based on in vitro and in silico testing requires utilizing toxicity pathway information to distinguish adverse outcomes from recoverable adaptive events. Little work has focused on oxidative stresses in human airway for the purposes of predicting adverse responses. We hypothesize that early gene expression-mediated molecular changes could be used to delineate adaptive and adverse responses to environmentally-based perturbations. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure, a model oxidant. Airway derived BEAS-2B cells exposed to 2-10 µM Zn2+ elicited concentration- and time-dependent cytotoxicity. Normal, adaptive, and cytotoxic Zn2+ exposure conditions were determined with traditional apical endpoints, and differences in global gene expression around the tipping point of the responses were used to delineate underlying molecular mechanisms. Bioinformatic analyses of differentially expressed genes indicate early enrichment of stress signaling pathways, including those mediated by the transcription factors p53 and NRF2. After 4 h, 154 genes were differentially expressed (p < 0.01) between the adaptive and cytotoxic Zn2+ concentrations. Nearly 40% of the biomarker genes were related to the p53 signaling pathway with 30 genes identified as likely direct targets using a database of p53 ChIP-seq studies. Despite similar p53 activation profiles, these data revealed widespread dampening of p53 and NRF2-related genes as early as 4 h after exposure at higher, unrecoverable Zn2+ exposures. Thus, in our model early increased activation of stress response pathways indicated a recoverable adaptive event. Overall, this study highlights the importance of characterizing molecular mechanisms around the tipping point of adverse responses to better inform HTS paradigms.


Assuntos
Biomarcadores/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Estresse Oxidativo , Apoptose , Linhagem Celular , Sobrevivência Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Glutationa/metabolismo , Humanos , Imunoensaio , Fator 2 Relacionado a NF-E2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Medição de Risco , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Zinco/química
3.
Chem Res Toxicol ; 28(6): 1144-55, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26039340

RESUMO

There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.


Assuntos
Arsênio/toxicidade , Metilação de DNA/efeitos dos fármacos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Urotélio/citologia , Urotélio/efeitos dos fármacos , Adulto , Idoso , Arsênio/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA/genética , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Bexiga Urinária/patologia , Adulto Jovem
4.
Anal Chem ; 86(20): 10422-8, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25300934

RESUMO

This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).


Assuntos
Arsênio/química , Técnicas de Química Analítica/instrumentação , Espectrometria de Fluorescência/normas , Espectrofotometria Atômica/normas , Arsênio/análise , Técnicas de Química Analítica/economia , Água Potável/química , Limite de Detecção , Nebulizadores e Vaporizadores
5.
Environ Health Perspect ; 122(10): 1088-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25000461

RESUMO

BACKGROUND: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. OBJECTIVES: Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. METHODS: We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. RESULTS: Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAsIII, 1.63 (1.24, 2.15) for MAsIII, and 1.31 (0.96, 1.84) for DMAsIII. DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). CONCLUSIONS: Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure.


Assuntos
Arsênio/urina , Diabetes Mellitus/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Urotélio/metabolismo , Poluentes Químicos da Água/urina , Adulto , Arsênio/análise , Arsênio/metabolismo , Intoxicação por Arsênico , Arsenicais/análise , Arsenicais/metabolismo , Arsenicais/urina , Biomarcadores/metabolismo , Glicemia/análise , Diabetes Mellitus/induzido quimicamente , Exposição Ambiental/efeitos adversos , Células Epiteliais/química , Células Epiteliais/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Prevalência , Urotélio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Abastecimento de Água/análise , Abastecimento de Água/estatística & dados numéricos
6.
J Anal At Spectrom ; 28(9): 1456-1465, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24014931

RESUMO

An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at -196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL-1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 µL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL-1 total As was performed. The concentrations of methylated As species in tens of pg mL-1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species.

7.
Metallomics ; 3(12): 1347-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22015847

RESUMO

Chronic ingestion of water containing inorganic arsenic (iAs) has been linked to a variety of adverse health effects, including cancer, hypertension and diabetes. Current evidence suggests that the toxic methylated trivalent metabolites of iAs, methylarsonous acid (MAs(III)) and dimethylarsinous acid (DMAs(III)) play a key role in the etiology of these diseases. Both MAs(III) and DMAs(III) have been detected in urine of subjects exposed to iAs. However, the rapid oxidation of DMAs(III) and, to a lesser extent, MAs(III) in oxygen-rich environments leads to difficulties in the analysis of these metabolites in samples of urine collected in population studies. Results of our previous work indicate that MAs(III) and DMAs(III) are relatively stable in a reducing cellular environment and can be quantified in cells and tissues. In the present study, we used the oxidation state-specific hydride generation-cryotrapping-atomic absorption spectroscopy (HG-CT-AAS) to examine the presence and stability of these trivalent metabolites in the liver of mice and in UROtsa/F35 cells exposed to iAs. Tri- and pentavalent metabolites of iAs were analyzed directly (without chemical extraction or digestion). Liver homogenates prepared in cold deionized water and cell culture medium and lysates were stored at either 0 °C or -80 °C for up to 22 days. Both MAs(III) and DMAs(III) were stable in homogenates stored at -80 °C. In contrast, DMAs(III) in homogenates stored at 0 °C began to oxidize to its pentavalent counterpart after 1 day; MAs(III) remained stable for at least 3 weeks under these conditions. MAs(III) and DMAs(III) generated in UROtsa/F35 cultures were stable for 3 weeks when culture media and cell lysates were stored at -80 °C. These results suggest that samples of cells and tissues represent suitable material for the quantitative, oxidation state-specific analysis of As in laboratory and population studies examining the metabolism or toxic effects of this metalloid.


Assuntos
Arsênio/metabolismo , Arsenicais/metabolismo , Fígado/metabolismo , Animais , Arsênio/análise , Arsenicais/análise , Linhagem Celular , Humanos , Fígado/química , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Espectrofotometria Atômica
8.
Environ Health ; 10: 73, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864395

RESUMO

BACKGROUND: Human exposures to inorganic arsenic (iAs) have been linked to an increased risk of diabetes mellitus. Recent laboratory studies showed that methylated trivalent metabolites of iAs may play key roles in the diabetogenic effects of iAs. Our study examined associations between chronic exposure to iAs in drinking water, metabolism of iAs, and prevalence of diabetes in arsenicosis-endemic areas of Mexico. METHODS: We used fasting blood glucose (FBG), fasting plasma insulin (FPI), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), and insulin resistance (HOMA-IR) to characterize diabetic individuals. Arsenic levels in drinking water and urine were determined to estimate exposure to iAs. Urinary concentrations of iAs and its trivalent and pentavalent methylated metabolites were measured to assess iAs metabolism. Associations between diabetes and iAs exposure or urinary metabolites of iAs were estimated by logistic regression with adjustment for age, sex, hypertension and obesity. RESULTS: The prevalence of diabetes was positively associated with iAs in drinking water (OR 1.13 per 10 ppb, p < 0.01) and with the concentration of dimethylarsinite (DMAsIII) in urine (OR 1.24 per inter-quartile range, p = 0.05). Notably, FPI and HOMA-IR were negatively associated with iAs exposure (ß -2.08 and -1.64, respectively, p < 0.01), suggesting that the mechanisms of iAs-induced diabetes differ from those underlying type-2 diabetes, which is typically characterized by insulin resistance. CONCLUSIONS: Our study confirms a previously reported, but frequently questioned, association between exposure to iAs and diabetes, and is the first to link the risk of diabetes to the production of one of the most toxic metabolites of iAs, DMAsIII.


Assuntos
Arsênio/urina , Ácido Cacodílico/análogos & derivados , Diabetes Mellitus/epidemiologia , Exposição Ambiental/análise , Adolescente , Adulto , Arsênio/análise , Arsênio/metabolismo , Arsênio/toxicidade , Intoxicação por Arsênico/complicações , Intoxicação por Arsênico/diagnóstico , Arsenicais/metabolismo , Arsenicais/urina , Glicemia/análise , Ácido Cacodílico/toxicidade , Ácido Cacodílico/urina , Estudos Transversais , Diabetes Mellitus/induzido quimicamente , Exposição Ambiental/efeitos adversos , Feminino , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Resistência à Insulina , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Prevalência , Abastecimento de Água
9.
Chem Res Toxicol ; 24(4): 478-80, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21361335

RESUMO

Growing evidence suggest that the methylated trivalent metabolites of inorganic arsenic (iAs), methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)), contribute to adverse effects of iAs exposure. However, the lack of suitable methods has hindered the quantitative analysis of MAs(III) and DMAs(III) in complex biological matrices. Here, we show that hydride generation-cryotrapping-atomic absorption spectrometry can quantify both MAs(III) and DMAs(III) in livers of mice exposed to iAs. No sample extraction is required, thus limiting MAs(III) or DMAs(III) oxidation prior to analysis. The limits of detection are below 6 ng As/g of tissue, making this method suitable even for studies examining low exposures to iAs.


Assuntos
Arsênio/metabolismo , Ácido Cacodílico/análogos & derivados , Fígado/química , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/metabolismo , Animais , Arsênio/química , Arsênio/toxicidade , Ácido Cacodílico/análise , Ácido Cacodílico/química , Fígado/metabolismo , Metilação , Camundongos , Oxirredução , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA