Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37513874

RESUMO

Neuropathic pain (NP) is a chronic condition resulting from damaged pain-signaling pathways. It is a debilitating disorder that affects up to 10% of the world's population. Although opioid analgesics are effective in reducing pain, they present severe risks; so, there is a pressing need for non-opioid pain-relieving drugs. One potential alternative is represented by sigma-1 receptor (S1R) antagonists due to their promising analgesic effects. Here, we report the synthesis and biological evaluation of a series of S1R antagonists based on a 2-aryl-4-aminobutanol scaffold. After assessing affinity toward the S1R and selectivity over the sigma-2 receptor (S2R), we evaluated the agonist/antagonist profile of the compounds by investigating their effects on nerve growth factor-induced neurite outgrowth and aquaporin-mediated water permeability in the presence and absence of oxidative stress. (R/S)-RC-752 emerged as the most interesting compound for S1R affinity (Ki S1R = 6.2 ± 0.9) and functional antagonist activity. Furthermore, it showed no cytotoxic effect in two normal human cell lines or in an in vivo zebrafish model and was stable after incubation in mouse plasma. (R/S)-RC-752 was then evaluated in two animal models of NP: the formalin test and the spinal nerve ligation model. The results clearly demonstrated that compound (R/S)-RC-752 effectively alleviated pain in both animal models, thus providing the proof of concept of its efficacy as an antinociceptive agent.

2.
J Med Chem ; 64(20): 14997-15016, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34624193

RESUMO

The sigma 1 receptor (S1R) is an enigmatic ligand-operated chaperone involved in many important biological processes, and its functions are not fully understood yet. Herein, we developed a novel series of bitopic S1R ligands as versatile tools to investigate binding processes, allosteric modulation, and the oligomerization mechanism. These molecules have been prepared in the enantiopure form and subjected to a preliminary biological evaluation, while in silico investigations helped to rationalize the results. Compound 7 emerged as the first bitopic S1R ligand endowed with low nanomolar affinity (Ki = 2.6 nM) reported thus far. Computational analyses suggested that 7 may stabilize the open conformation of the S1R by simultaneously binding the occluded primary binding site and a peripheral site on the cytosol-exposed surface. These findings pave the way to new S1R ligands with enhanced activity and/or selectivity, which could also be used as probes for the identification of a potential allosteric site.


Assuntos
Encéfalo/metabolismo , Receptores sigma/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Cobaias , Ligantes , Estrutura Molecular , Neuritos/metabolismo , Células PC12 , Ratos , Receptores sigma/química , Relação Estrutura-Atividade , Receptor Sigma-1
3.
Eur J Med Chem ; 158: 353-370, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30223122

RESUMO

In this manuscript we report on the design, synthesis and evaluation of dual Sigma 1 Receptor (S1R) modulators/Acetylcholinesterase (AChE) inhibitors endowed with antioxidant and neurotrophic properties, potentially able to counteract neurodegeneration. The compounds based on arylalkylaminoketone scaffold integrate the pharmacophoric elements of RRC-33, a S1R modulator developed by us, donepezil, a well-known AChE inhibitor, and curcumin, a natural antioxidant compound with neuroprotective properties. A small library of compounds was synthesized and preliminary in vitro screening performed. Some compounds showed good S1R binding affinity, selectivity towards S2R and N-Methyl-d-Aspartate (NMDA) receptor, AChE relevant inhibiting activity and are potentially able to bypass the BBB, as predicted by the in silico study. For the hits 10 and 20, the antioxidant profile was assessed in SH-SY5Y human neuroblastoma cell lines by evaluating their protective effect against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Tested compounds resulted effective in decreasing ROS production, thus ameliorating the cellular survival. Moreover, compounds 10 and 20 showed to be effective in promoting the neurite elongation of Dorsal Root Ganglia (DRG), thus demonstrating a promising neurotrophic activity. Of note, the tested compounds did not show any cytotoxic effect at the concentration assayed. Relying on these encouraging results, both compounds will undergo a structure optimization program for the development of therapeutic candidates for neurodegenerative diseases treatment.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Receptores sigma/metabolismo , Animais , Antioxidantes/farmacocinética , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacocinética , Cobaias , Humanos , Camundongos , Simulação de Acoplamento Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacocinética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Receptor Sigma-1
4.
Front Pharmacol ; 9: 711, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042674

RESUMO

Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.

5.
Future Med Chem ; 9(17): 2029-2051, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29076758

RESUMO

Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.


Assuntos
Compostos de Bifenilo/farmacologia , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Receptores sigma/agonistas , Animais , Compostos de Bifenilo/química , Modelos Animais de Doenças , Imunomodulação , Modelos Moleculares , Conformação Molecular , Esclerose Múltipla/imunologia , Fármacos Neuroprotetores/química , Piperidinas/química , Ratos , Receptores sigma/imunologia , Receptores sigma/metabolismo , Receptor Sigma-1
6.
Eur J Med Chem ; 124: 649-665, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27614411

RESUMO

In the early 2000s, the Sigma Receptor (SR) family was identified as potential "druggable" target in cancer treatment. Indeed, high density of SRs was found in breast, lung, and prostate cancer cells, supporting the idea that SRs could play a role in tumor growth and progression. Moreover, a link between the degree of SR expression and tumor aggressiveness has been postulated, justified by the presence of SRs in high metastatic-potential cancer cells. As a consequence, considerable efforts have been devoted to the development of small molecules endowed with good affinity towards the two SR subtypes (S1R and S2R) with potential anticancer activity. Herein, we report the synthesis and biological profile of aryl-alkyl(alkenyl)-4-benzylpiperidine derivatives - as novel potential anticancer drugs targeting SR. Among them, 3 (RC-106) exhibited a preclinical profile of antitumor efficacy on a panel of cell lines representative of different cancer types (i.e. Paca3, MDA-MB 231) expressing both SRs, and emerged as a hit compound of a new class of SR modulators potentially useful for the treatment of cancer disease.


Assuntos
Piperidinas/síntese química , Piperidinas/farmacologia , Receptores sigma , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Células PC12 , Piperidinas/química , Ratos , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores
7.
Future Med Chem ; 8(3): 287-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26898712

RESUMO

AIM: Nowadays, there is a great interest in the therapeutic potential of sigma1 receptor ligands for treating different CNS pathologies. Our previous investigations led to identify (R)-RC-33 as a potent and selective S1R agonist. RESULTS: Herein, we report the gram-scale synthesis, pharmacokinetic profile and CNS distribution of (R)-RC-33 in the mouse to determine the most suitable dosage schedule for in vivo administration. For comparative purposes, the same experiments were also performed with PRE-084, the most widely used S1R agonist commonly in pharmacological experiments. DISCUSSION: (R)-RC-33 shows a similar pharmacokinetic profile and a better CNS distribution when compared with PRE-084. CONCLUSION: (R)-RC-33 may be a promising candidate for in vivo studies in animal models of neurodegenerative diseases.


Assuntos
Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/farmacocinética , Doenças do Sistema Nervoso Central/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Piperidinas/farmacologia , Piperidinas/farmacocinética , Receptores sigma/agonistas , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Doenças do Sistema Nervoso Central/patologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Morfolinas/química , Morfolinas/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Receptor Sigma-1
8.
Biomed Chromatogr ; 30(4): 645-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26447185

RESUMO

Over the years there has been a growing interest in the therapeutic potential for central nervous system pathologies of sigma receptor modulators. The widely studied PRE-084 and our compounds RC-33 and RC-34 are very potent and selective sigma 1 receptor agonists that could represent promising drug candidates for Amyotrophic Lateral Sclerosis (ALS). Herein, we develop and validate robust and easy-to-use reverse-phase chromatographic methods suitable for detecting and quantifying PRE-084, RC-33 and RC-34 in mouse blood, brain and spinal cord. An HPLC/UV/ESI-MS system was employed for analyzing PRE-084 and an HPLC/UV-PDA system for determining RC-33 and RC-34. Chromatographic separations were achieved on Waters Symmetry RP18 column (150 × 3.9 mm, 5 µm), eluting with water and acetonitrile (both containing 0.1% formic acid) in gradient conditions. The recovery of PRE-084, RC-33 and RC-34 was >95% in all the considered matrices. Their limits of quantitation and detection were also determined. Validation proved the methods be suitable for separating tested compounds from endogenous interferences, being characterized by good sensitivity, linearity, precision and accuracy. A preliminary central nervous system distribution study showed a high distribution of RC-33 in brain and spinal cord, with concentration values well above the determined limit of quantitation. The proposed methods will be used in future preclinical investigations.


Assuntos
Compostos de Bifenilo/sangue , Compostos de Bifenilo/farmacocinética , Cromatografia de Fase Reversa/métodos , Morfolinas/farmacocinética , Piperidinas/sangue , Piperidinas/farmacocinética , Receptores sigma/agonistas , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Camundongos , Morfolinas/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Medula Espinal/metabolismo , Receptor Sigma-1
9.
Neurobiol Dis ; 62: 218-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141020

RESUMO

The identification of novel molecular targets crucially involved in motor neuron degeneration/survival is a necessary step for the development of hopefully more effective therapeutic strategies for amyotrophic lateral sclerosis (ALS) patients. In this view, S1R, an endoplasmic reticulum (ER)-resident receptor with chaperone-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathology. Treatment with the S1R agonist PRE-084 improves locomotor function and motor neuron survival in presymptomatic and early symptomatic mutant SOD1-G93A ALS mice. Here, we tested the efficacy of PRE-084 in a model of spontaneous motor neuron degeneration, the wobbler mouse (wr) as a proof of concept that S1R may be regarded as a key therapeutic target also for ALS cases not linked to SOD1 mutation. Increased staining for S1R was detectable in morphologically spared cervical spinal cord motor neurons of wr mice both at early (6th week) and late (12th week) phases of clinical progression. S1R signal was also detectable in hypertrophic astrocytes and reactive microglia of wr mice. Chronic treatment with PRE-084 (three times a week, for 8weeks), starting at symptom onset, significantly increased the levels of BDNF in the gray matter, improved motor neuron survival and ameliorated paw abnormality and grip strength performance. In addition, the treatment significantly reduced the number of reactive astrocytes whereas, that of CD11b+ microglial cells was increased. A deeper evaluation of microglial markers revealed significant increased number of cells positive for the pan-macrophage marker CD68 and of CD206+ cells, involved in tissue restoration, in the white matter of PRE-084-treated mice. The mRNA levels of TNF-α and IL-1ß were not affected by PRE-084 treatment. Thus, our results support pharmacological manipulation of S1R as a promising strategy to cure ALS and point to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms involved in S1R-mediated neuroprotection.


Assuntos
Morfolinas/uso terapêutico , Doença dos Neurônios Motores/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Receptores sigma/metabolismo , Fatores Etários , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Neuroglia/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Receptor Sigma-1
10.
Chirality ; 25(11): 814-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038285

RESUMO

In this study we addressed the role of chirality in the biological activity of RC-33, recently studied by us in its racemic form. An asymmetric synthesis procedure was the first experiment, leading to the desired enantioenriched RC-33 but with an enantiomeric excess (ee) not good enough for supporting the in vitro investigation. An enantioselective high-performance liquid chromatography (HPLC) procedure was then successfully carried out, yielding both RC-33 enantiomers in amounts and optical purity suitable for the pharmacological study. The absolute configuration of pure enantiomers was easily assigned exploiting the asymmetric synthesis previously devised. As emerged in the preliminary in vitro biological investigation, (S)- and (R)-RC-33 possess a comparable affinity towards the σ1 receptor and a very a similar behavior in the calcium influx assay, resulting in an equally effective σ1 receptor agonist. Overall, the results obtained so far suggest that the interaction with the biological target is nonstereoselective and leads us to hypothesize that there is a lack of stereoselectivity in the biological activity of RC-33.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/isolamento & purificação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cobaias , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Piperidinas/síntese química , Piperidinas/isolamento & purificação , Ratos , Receptores sigma/agonistas , Estereoisomerismo
11.
ChemMedChem ; 8(9): 1514-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832823

RESUMO

Our recent research efforts identified racemic RC-33 as a potent and metabolically stable σ1 receptor agonist. Herein we describe the isolation of pure RC-33 enantiomers by chiral chromatography, assignment of their absolute configuration, and in vitro biological studies in order to address the role of chirality in the biological activity of these compounds and their metabolic processing. The binding of enantiopure RC-33 to the σ1 receptor was also investigated in silico by molecular dynamics simulations. Both RC-33 enantiomers showed similar affinities for the σ1 receptor and appeared to be almost equally effective as σ1 receptor agonists. However, the R-configured enantiomer showed higher in vitro hepatic metabolic stability in the presence of NADPH than the S enantiomer. Overall, the results presented herein led us to select (R)-RC-33 as the optimal candidate for further in vivo studies in an animal model of amyotrophic lateral sclerosis.


Assuntos
Compostos de Bifenilo/metabolismo , Fármacos Neuroprotetores/metabolismo , Piperidinas/metabolismo , Receptores sigma/agonistas , Animais , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/toxicidade , Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Cobaias , Fígado/metabolismo , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/química , Células PC12 , Piperidinas/química , Piperidinas/toxicidade , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/química , Receptores Opioides/metabolismo , Receptores sigma/metabolismo , Estereoisomerismo
12.
Bioorg Med Chem ; 21(9): 2577-86, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498917

RESUMO

Strong pharmacological evidences indicate that σ1 receptors are implicated in the pathophysiology of all major CNS disorders. In the last years our research group has conducted extensive studies aimed at discovering novel σ1 ligands and we recently selected (R/S)-RC-33 as a novel potent and selective σ1 receptor agonist. As continuation of our work in this field, here we report our efforts in the development of this new σ1 receptor agonist. Initially, we investigated the binding of (R) and (S) enantiomers of RC-33 to the σ1 receptor by in silico experiments. The close values of the predicted affinity of (R)-RC-33 and (S)-RC-33 for the protein evidenced the non-stereoselective binding of RC-33 to the σ1 receptor; this, in turn, supported further development and characterization of RC-33 in its racemic form. Subsequently, we set-up a scaled-up, optimized synthesis of (R/S)-RC-33 along with some compound characterization data (e.g., solubility in different media and solid state characterization by thermal analysis techniques). Finally, metabolic studies of RC-33 in different biological matrices (e.g., plasma, blood, and hepatic S9 fraction) of different species (e.g., rat, mouse, dog, and human) were performed. (R/S)-RC-33 is generally stable in all examined biological matrices, with the only exception of rat and human liver S9 fractions in the presence of NADPH. In such conditions, the compound is subjected to a relevant oxidative metabolism, with a degradation of approximately 65% in rat and 69% in human. Taken together, our results demonstrated that (R/S)-RC-33 is a highly potent, selective, metabolically stable σ1 agonist, a promising novel neuroprotective drug candidate.


Assuntos
Compostos de Bifenilo/farmacologia , Fator de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Piperidinas/farmacologia , Receptores sigma/agonistas , Animais , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Físico-Química , Cães , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Células PC12 , Piperidinas/química , Piperidinas/metabolismo , Ratos , Receptores sigma/metabolismo , Receptor Sigma-1
13.
Int J Oncol ; 42(1): 83-92, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23174862

RESUMO

In cancer cells integrins modulate important cellular events that regulate the metastasic cascade which involves detachment from the tumor mass, dissemination and attachment to the oncogenic niche. The α5ß1, αvß3 and αvß5 integrins are widely expressed in different cancer types and recognize the tripeptide Arg-Gly-Asp (RGD) motif present in several extracellular matrix proteins. In human glioblastoma, αvß3 integrin expression correlates with tumor grade, suggesting that this integrin may play a crucial role in the highly infiltrative behavior of high grade gliomas. However, few selective RGD-like antagonists have been developed and few studies have investigated their effects in in vitro models of human glioblastoma. In this study, we investigated several cellular effects and the underlying molecular mechanisms exerted by a new small-molecule RGD antagonist, 1a-RGD, in the U251 and U373 human glioblastoma cell lines. Treatment with 1a-RGD (20 µM) demonstrated a weak effect on cell viability and cell proliferation but strongly inhibited cell attachment and cell migration together with actin cytoskeleton disassembly. Prolonged 1a-RGD treatment (72 h) induced anoikis, assessed by Annexin staining and nucleosome assay, particularly in the detached cells. When integrin-linked transduction pathways were investigated, 1aRGD was found to exert a marked reduction in focal adhesion kinase (FAK) phosphorylation without affecting the AKT- and ERK-dependent pathways. Our data indicate that 1a-RGD, probably via modulation of the FAK-dependent pathway, inhibits cell migration and attachment and induces anoikis in glioblastoma cells. This novel finding suggests that the development of an RGD-like molecule may represent a promising tool for the pharmacological approach aimed at reducing the malignancy of glioblastoma cells.


Assuntos
Anoikis/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glioblastoma/patologia , Oligopeptídeos/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Técnicas Imunoenzimáticas , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Vitronectina/antagonistas & inibidores , Receptores de Vitronectina/genética , Receptores de Vitronectina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
14.
Exp Neurol ; 236(2): 307-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22634210

RESUMO

The pathogenic factors leading to selective degeneration of motoneurons in ALS are not yet understood. However, altered functionality of voltage-dependent Na(+) channels may play a role since cortical hyperexcitability was described in ALS patients and riluzole, the only drug approved to treat ALS, seems to decrease glutamate release via blockade or inactivation of voltage-dependent Na(+) channels. The wobbler mouse, a murine model of motoneuron degeneration, shares some of the clinical features of human ALS. At early stages of the wobbler disease, increased cortical hyperexcitability was observed. Moreover, riluzole reduced motoneuron loss and muscular atrophy in treated wobbler mice. Here, we focussed our attention on specific electrophysiological properties, like voltage-activated Na(+) currents and underlying regenerative electrical activity, as read-outs of the neuronal maturation process of neural stem/progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of adult early symptomatic wobbler mice. In self-renewal conditions, the rate of wobbler NPC proliferation "in vitro" was 30% lower than that of healthy mice. Conversely, the number of wobbler NPCs displaying early neuronal commitment and action potentials was significantly higher. Upon switching from proliferative to differentiative conditions, NPCs underwent significant changes in the key properties of voltage gated Na(+) currents. The most notable finding, in cells with neuronal morphology, was an increase in Na(+) current density that strictly correlated with an increased probability to generate action potentials. This feature was remarkably more pronounced in neurons differentiated from wobbler NPCs that upon sustained stimulation, displayed short trains of pathological facilitation. In agreement with this result, an increase in the number of c-Fos positive cells, a surrogate marker of neuronal network activation, was observed in the mesial cortex of the wobbler mice "in situ". Thus these findings, all together, suggest that a state of early neuronal hyperexcitability may be a major contributor of motoneuron vulnerability.


Assuntos
Potenciais de Ação/genética , Diferenciação Celular/genética , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Fatores Etários , Substituição de Aminoácidos/genética , Animais , Sobrevivência Celular/genética , Glutamina/genética , Leucina/genética , Camundongos , Camundongos Mutantes Neurológicos , Células-Tronco Neurais/metabolismo , Canais de Sódio/genética
15.
Bioorg Med Chem ; 19(21): 6210-24, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967807

RESUMO

Herein we report the synthesis, drug-likeness evaluation, and in vitro studies of new sigma (σ) ligands based on arylalkenylaminic scaffold. For the most active olefin the corresponding arylalkylamine was studied. Novel arylalkenylamines generally possess high σ(1) receptor affinity (K(i) values <25 nM) and good σ(1)/σ(2) selectivity (K(i)σ(2) >100). Particularly, the piperidine derivative (E)-17 and its arylalkylamine analog (R,S)-33 were observed to be excellent σ(1) receptor ligands (K(i)=0.70 and 0.86 nM, respectively) and to display significantly high selectivity over σ(2), µ-, and κ-opioid receptors and phencyclidine (PCP) binding site of the N-methyl-d-aspartate (NMDA) receptors. Moreover in PC12 cells (R,S)-33 promoted the nerve growth factor (NGF)-induced neurite outgrowth and elongation. Co-administration of the selective σ(1) receptor antagonist BD-1063 totally counteracted this effect, confirming that σ(1) receptors are involved in the (R,S)-33 modulation of the NGF effect in PC12 cells and suggesting a σ(1) agonist profile. As a part of our work, a threedimensional σ(1) pharmacophore model was also developed employing GALAHAD methodology. Only active compounds were used for deriving this model. The model included two hydrophobes and a positive nitrogen as relevant features and it was able to discriminate between molecules with and without affinity toward σ(1) receptor subtype.


Assuntos
Aminas/farmacologia , Fator de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Receptores sigma/agonistas , Aminas/síntese química , Aminas/química , Animais , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Neuritos/metabolismo , Células PC12 , Ligação Proteica , Ratos , Receptores sigma/metabolismo
16.
Exp Neurol ; 225(1): 163-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20558160

RESUMO

In the present study, we investigated whether cultured astrocytes derived from adult neural precursor cells (NPCs) obtained from the subventricular zone (SVZ) of wobbler mice display metabolic traits of the wobbler astrocytes in situ and in primary culture. We also utilized NPC-derived astrocytes as a tool to investigate the involvement of astrocytes in the molecular mechanism of MND focusing on the possible alteration of glutamate reuptake since excitotoxicity glutamate-mediated may be a contributory pathway. NPC-derived wobbler astrocytes are characterized by high immunoreactivity for GFAP, significant decrease of glutamate uptake and reduced immunoreactivity for glutamate transporters GLT1 and GLAST. Spinal cord motor neurons obtained from healthy mouse embryos, when co-cultured with wobbler NPC-derived astrocytes, show reduced viability and morphologic alterations. These suffering motor neurons are caspase-7 positive, and treatment with anti-apoptotic drug V5 increases cell survival. Physical contact with wobbler astrocytes is not essential because purified motor neurons display reduced survival also when treated with the medium conditioned by wobbler NPC-derived astrocytes. Toxic levels of glutamate were revealed by HPLC assay in the extracellular medium of wobbler NPC-derived astrocytes, whereas the level of intracellular glutamate is reduced if compared with controls. Moreover, glutamate receptor antagonists are able to enhance motor neuron survival. Therefore, our results demonstrate that astrocytes derived from wobbler neural precursor cells display impaired glutamate homeostasis that may play a crucial role in motor neuron degeneration. Finally, the cultured astrocytes derived from NPCs of adult mice may offer a useful alternative in vitro model to study the molecular mechanisms involved in neurodegeneration.


Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Ácido Glutâmico/metabolismo , Neurônios Motores/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Animais , Comunicação Celular/fisiologia , Morte Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Camundongos , Camundongos Mutantes Neurológicos , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia
17.
Pharmacol Res ; 61(4): 306-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19931393

RESUMO

The proliferative and antiapoptotic actions of endothelin (ET)-1 in cancer cells have been documented and ET receptor antagonists have been exploited as potential anticancer drugs. Glioblastoma cell lines express both ETA and ETB receptors and previous works have shown that ETB receptors are involved in the proliferation of different cancer cell types. In this study we have investigated the effects of two structurally unrelated ETB receptor antagonists, BQ788 and A192621, on cell survival, proliferation and apoptosis in 1321-N1, U87 and IPDDCA2 glioma cell lines. BQ788 and A192621 reduced glioma cells viability and proliferation assessed by BrdU incorporation and cell cycle analysis by flow cytometry, while in contrast the ETA receptor antagonist BQ123 had no effect on cell survival. TUNEL assay and immunocytochemical experiments showed that BQ788 and A192621 trigger apoptotic processes mainly via activation of the intrinsic mitochondrial pathway involving caspase-9 activation, AIF release and cytochrome c translocation. Furthermore, treatment with ETB antagonists downregulates ERK- and p38MAPK-dependent pathways but does not affect VEGF mRNA levels. Our findings support the hypothesis that ETB antagonists represent a new promising therapeutic strategy for the treatment of high grade gliomas.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas do Receptor de Endotelina B , Glioma/tratamento farmacológico , Oligopeptídeos/farmacologia , Piperidinas/farmacologia , Pirrolidinas/farmacologia , Fator de Indução de Apoptose/metabolismo , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/patologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Proteome Res ; 8(11): 5229-40, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19764823

RESUMO

The wobbler mouse is a model of selective motor neuron degeneration in the cervical spinal cord. Comparing cervical and lumbar tracts of control and diseased mice at the early stage of pathology by proteomic analysis, we identified 31 proteins by peptide mass fingerprint after tryptic digestion and MALDI-TOF analysis, that were differently represented among the four experimental groups. In healthy mice, patterns of protein expression differed between cervical and lumbar tract: proteins of cellular energetic metabolism pathway showed lower expression in the cervical tract, while cellular trafficking proteins were overrepresented. In wobbler mice, these differences disappeared and the expression pattern was similar between cervical and lumbar spinal cord. We found that most of the proteins differentially regulated in wobbler with respect to control cervical tract were related to astrogliosis or involved in glutamate-glutamine cycle, energy transduction and redox functions. Proteins overrepresented in the wobbler lumbar spinal cord were cytoskeleton proteins and cellular transport proteins, in particular the vesicle fusing ATPase and the isoform 2 of syntaxin-binding protein 1, involved in vesicle trafficking. We suggest that overexpression of proteins involved in vesicle trafficking, together with proteins counteracting mitochondrial dysfunction can have neuroprotective effects, preserving lumbar spinal cord motor neurons in wobbler mice.


Assuntos
Vértebras Cervicais , Vértebras Lombares , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso , Proteoma/análise , Medula Espinal , Animais , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Consumo de Oxigênio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/metabolismo , Medula Espinal/patologia
19.
Neurosci Lett ; 399(3): 186-90, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16495003

RESUMO

Markers of oxidative stress have been found in spinal cord, cortex, cerebrospinal fluid, and plasma of SALS patients. Mitochondrial and calcium metabolism dysfunction were also found in peripheral lymphocytes from SALS patients. In this study, we demonstrate that lymphocytes from SALS patients are more prone to undergo alteration of cell membrane integrity both in basal conditions and following oxidative stress induced by H2O2 treatment. The expression of the antioxidant proteins, Bcl-2, SOD1 and catalase in basal conditions, was significantly lower in lymphocytes from SALS patients than in lymphocytes from age and sex matched controls. Exposure to H2O2 induced a time-dependent decrease of Bcl-2 and SOD1 in control lymphocytes. Conversely, the levels of these proteins remained unchanged in SALS lymphocytes even after 18 h stress. Catalase expression was not significantly modified by oxidative stress. Our results demonstrate that two factors involved in the genesis and/or progression of the familial form of the disease with SOD1 mutation are altered also in the sporadic form of ALS and suggest that the oxidative stress protection pathway is deregulated in lymphocytes from ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Regulação da Expressão Gênica/fisiologia , Linfócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Western Blotting/métodos , Estudos de Casos e Controles , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Linfócitos/efeitos dos fármacos , Superóxido Dismutase-1 , Fatores de Tempo
20.
Neurobiol Dis ; 17(2): 349-57, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15474372

RESUMO

Profound alteration of the oxygen consumption rate (QO2) is present in the cervical spinal cord (CS) of the wobbler mice aged 12 weeks (wr12). Early symptomatic mice at 4 weeks (wr4) show less pronounced changes with decreases of basal QO2 (P < 0.03) and of QO2 through complex I (P < 0.04). Mitochondrial respiratory enzyme activities, measured spectrophotometrically in the CS homogenate, show no difference between wr12 and controls, whereas complex I is reduced in the wr4 CS (P < 0.0003). Complex I activity is lower than normal both in wr12 and wr4 CS when measured in motor neurons by mean of a histochemical technique. Electron microscopy (EM) reveals a mixture of normal and morphologically altered mitochondria in wr4 motor neurons. The wobbler lumbar spinal cord is spared even at 12 weeks. Our results demonstrate the presence of mitochondrial abnormalities in the wobbler CS since the first manifestations of the disease. Thus, chronic mitochondrial dysfunction has a contributory role in motor neuron degeneration in the wobbler disease.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Doença dos Neurônios Motores/enzimologia , Medula Espinal/enzimologia , Envelhecimento , Animais , Vértebras Cervicais , Feminino , Histocitoquímica , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Atividade Motora , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Consumo de Oxigênio , Espectrofotometria , Medula Espinal/patologia , Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA