Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38729763

RESUMO

The Enhanced-Deep-Super-Resolution (EDSR) model is a state-of-the-art convolutional neural network suitable for improving image spatial resolution. It was previously trained with general-purpose pictures and then, in this work, tested on biomedical magnetic resonance (MR) images, comparing the network outcomes with traditional up-sampling techniques. We explored possible changes in the model response when different MR sequences were analyzed. T1w and T2w MR brain images of 70 human healthy subjects (F:M, 40:30) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) repository were down-sampled and then up-sampled using EDSR model and BiCubic (BC) interpolation. Several reference metrics were used to quantitatively assess the performance of up-sampling operations (RMSE, pSNR, SSIM, and HFEN). Two-dimensional and three-dimensional reconstructions were evaluated. Different brain tissues were analyzed individually. The EDSR model was superior to BC interpolation on the selected metrics, both for two- and three- dimensional reconstructions. The reference metrics showed higher quality of EDSR over BC reconstructions for all the analyzed images, with a significant difference of all the criteria in T1w images and of the perception-based SSIM and HFEN in T2w images. The analysis per tissue highlights differences in EDSR performance related to the gray-level values, showing a relative lack of outperformance in reconstructing hyperintense areas. The EDSR model, trained on general-purpose images, better reconstructs MR T1w and T2w images than BC, without any retraining or fine-tuning. These results highlight the excellent generalization ability of the network and lead to possible applications on other MR measurements.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Idoso , Aprendizado Profundo , Conjuntos de Dados como Assunto
2.
Sci Rep ; 14(1): 7403, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548805

RESUMO

Quantitative computed tomography (QCT)-based in silico models have demonstrated improved accuracy in predicting hip fractures with respect to the current gold standard, the areal bone mineral density. These models require that the femur bone is segmented as a first step. This task can be challenging, and in fact, it is often almost fully manual, which is time-consuming, operator-dependent, and hard to reproduce. This work proposes a semi-automated procedure for femur bone segmentation from CT images. The proposed procedure is based on the bone and joint enhancement filter and graph-cut algorithms. The semi-automated procedure performances were assessed on 10 subjects through comparison with the standard manual segmentation. Metrics based on the femur geometries and the risk of fracture assessed in silico resulting from the two segmentation procedures were considered. The average Hausdorff distance (0.03 ± 0.01 mm) and the difference union ratio (0.06 ± 0.02) metrics computed between the manual and semi-automated segmentations were significantly higher than those computed within the manual segmentations (0.01 ± 0.01 mm and 0.03 ± 0.02). Besides, a blind qualitative evaluation revealed that the semi-automated procedure was significantly superior (p < 0.001) to the manual one in terms of fidelity to the CT. As for the hip fracture risk assessed in silico starting from both segmentations, no significant difference emerged between the two (R2 = 0.99). The proposed semi-automated segmentation procedure overcomes the manual one, shortening the segmentation time and providing a better segmentation. The method could be employed within CT-based in silico methodologies and to segment large volumes of images to train and test fully automated and supervised segmentation methods.


Assuntos
Fêmur , Fraturas do Quadril , Humanos , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Extremidade Inferior , Fraturas do Quadril/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
3.
J Med Syst ; 48(1): 14, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227131

RESUMO

Many automated approaches have been proposed in literature to quantify clinically relevant wound features based on image processing analysis, aiming at removing human subjectivity and accelerate clinical practice. In this work we present a fully automated image processing pipeline leveraging deep learning and a large wound segmentation dataset to perform wound detection and following prediction of the Photographic Wound Assessment Tool (PWAT), automatizing the clinical judgement of the adequate wound healing. Starting from images acquired by smartphone cameras, a series of textural and morphological features are extracted from the wound areas, aiming to mimic the typical clinical considerations for wound assessment. The resulting extracted features can be easily interpreted by the clinician and allow a quantitative estimation of the PWAT scores. The features extracted from the region-of-interests detected by our pre-trained neural network model correctly predict the PWAT scale values with a Spearman's correlation coefficient of 0.85 on a set of unseen images. The obtained results agree with the current state-of-the-art and provide a benchmark for future artificial intelligence applications in this research field.


Assuntos
Inteligência Artificial , Benchmarking , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Fotografação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA