Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037294

RESUMO

Superionic conductors, or solid-state ion-conductors surpassing 0.01 S/cm in conductivity, can enable more energy dense batteries, robust artificial ion pumps, and optimized fuel cells. However, tailoring superionic conductors requires precise knowledge of ion migration mechanisms that are still not well understood due to limitations set by available spectroscopic tools. Most spectroscopic techniques do not probe ion hopping at its inherent picosecond timescale nor the many-body correlations between the migrating ions, lattice vibrational modes, and charge screening clouds-all of which are posited to greatly enhance ionic conduction. Here, we develop an ultrafast technique that measures the time-resolved change in impedance upon light excitation, which triggers selective ion-coupled correlations. We also develop a cost-effective, non-time-resolved laser-driven impedance method that is more accessible for lab-scale adoption. We use both techniques to compare the relative changes in impedance of a solid-state Li+ conductor Li0.5La0.5TiO3 (LLTO) before and after UV to THz frequency excitations to elucidate the corresponding ion-many-body-interaction correlations. From our techniques, we determine that electronic screening and phonon-mode interactions dominate the ion migration pathway of LLTO. Although we only present one case study, our technique can extend to O2-, H+, or other charge carrier transport phenomena where ultrafast correlations control transport. Furthermore, the temporal relaxation of the measured impedance can distinguish ion transport effects caused by many-body correlations, optical heating, correlation, and memory behavior.

2.
ACS Nano ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037113

RESUMO

Photocatalytic CO2 reduction to CO under unassisted (unbiased) conditions was recently demonstrated using heterostructure catalysts that combine p-type GaN with plasmonic Au nanoparticles and Cu nanoparticles as cocatalysts (p-GaN/Al2O3/Au/Cu). Here, we investigate the mechanistic role of Cu in p-GaN/Al2O3/Au/Cu under unassisted photocatalytic operating conditions using Cu K-edge X-ray absorption spectroscopy and first-principles calculations. Upon exposure to gas-phase CO2 and H2O vapor reaction conditions, the composition of the Cu nanoparticles is identified as a mixture of CuI and CuII oxide, hydroxide, and carbonate compounds without metallic Cu. These composition changes, indicating oxidative conditions, are rationalized by bulk Pourbaix thermodynamics. Under photocatalytic operating conditions with visible light excitation of the plasmonic Au nanoparticles, further oxidation of CuI to CuII is observed, indicating light-driven hole transfer from Au-to-Cu. This observation is supported by the calculated band alignments of the oxidized Cu compositions with plasmonic Au particles, where light-driven hole transfer from Au-to-Cu is found to be thermodynamically favored. These findings demonstrate that under unassisted (unbiased) gas-phase reaction conditions, Cu is found in carbonate-rich oxidized compositions rather than metallic Cu. These species then act as the active cocatalyst and play an oxidative rather than a reductive role in catalysis when coupled with plasmonic Au particles for light absorption, possibly opening an additional channel for water oxidation in this system.

3.
Angew Chem Int Ed Engl ; 63(30): e202405123, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38714495

RESUMO

In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.

4.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445732

RESUMO

Resonant intermediate states have been proposed to increase the efficiency of entangled two-photon absorption (ETPA). Although resonance-enhanced ETPA (r-ETPA) has been demonstrated in atomic systems using bright squeezed vacuum, it has not been studied in organic molecules. We investigate for the first time r-ETPA in an organic molecular dye, indocyanine green (ICG), when excited by broadband entangled photons in near-IR. Similar to many reported virtual state mediated ETPA (v-ETPA) measurements, no r-ETPA signals are measured, with an experimental upper bound for the cross section placed at 6(±2) × 10-23 cm2. In addition, the classical resonance-enhanced two-photon absorption (r-TPA) cross section of ICG at 800 nm is measured for the first time to be 20(±13) GM, where 1 GM equals 10-50 cm4 s, suggesting that having a resonant intermediate state does not significantly enhance two-photon processes in ICG. The spectrotemporally resolved emission signatures of ICG excited by entangled photons are also presented to support this conclusion.

5.
Sci Adv ; 10(12): eadk4282, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507483

RESUMO

Polarons are prevalent in condensed matter systems with strong electron-phonon coupling. The adiabaticity of the polaron relates to its transport properties and spatial extent. To date, only adiabatic small polaron formation has been measured following photoexcitation. The lattice reorganization energy is large enough that the first electron-optical phonon scattering event creates a small polaron without requiring substantial carrier thermalization. We measure that frustrating the iron-centered octahedra in the rare-earth orthoferrite ErFeO3 leads to antiadiabatic polaron formation. Coherent charge hopping between neighboring Fe3+─Fe2+ sites is measured with transient extreme ultraviolet spectroscopy and lasts several picoseconds before the polaron forms. The resulting small polaron formation time is an order of magnitude longer than previous measurements and indicates a shallow potential well, even in the excited state. The results emphasize the importance of considering dynamic electron-electron correlations, not just electron-phonon-induced lattice changes, for small polarons for transport, catalysis, and photoexcited applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA