Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Neurosci ; 14: 182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210753

RESUMO

The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously ("All ON") and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs "All ON" indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.

2.
Sensors (Basel) ; 20(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102239

RESUMO

Automated wireless sensing of force dynamics during a visuomotor control task was used to rapidly assess residual motor function during finger pinch (right and left hand) and lower lip compression in a cohort of seven adult males with chronic, unilateral middle cerebral artery (MCA) stroke with infarct confirmed by anatomic magnetic resonance imaging (MRI). A matched cohort of 25 neurotypical adult males served as controls. Dependent variables were extracted from digitized records of 'ramp-and-hold' isometric contractions to target levels (0.25, 0.5, 1, and 2 Newtons) presented in a randomized block design; and included force reaction time, peak force, and dF/dtmax associated with force recruitment, and end-point accuracy and variability metrics during the contraction hold-phase (mean, SD, criterion percentage 'on-target'). Maximum voluntary contraction force (MVCF) was also assessed to establish the force operating range. Results based on linear mixed modeling (LMM, adjusted for age and handedness) revealed significant patterns of dissolution in fine force regulation among MCA stroke participants, especially for the contralesional thumb-index finger followed by the ipsilesional digits, and the lower lip. For example, the contralesional thumb-index finger manifest increased reaction time, and greater overshoot in peak force during recruitment compared to controls. Impaired force regulation among MCA stroke participants during the contraction hold-phase was associated with significant increases in force SD, and dramatic reduction in the ability to regulate force output within prescribed target force window (±5% of target). Impaired force regulation during contraction hold-phase was greatest in the contralesional hand muscle group, followed by significant dissolution in ipsilateral digits, with smaller effects found for lower lip. These changes in fine force dynamics were accompanied by large reductions in the MVCF with the LMM marginal means for contralesional and ipsilesional pinch forces at just 34.77% (15.93 N vs. 45.82 N) and 66.45% (27.23 N vs. 40.98 N) of control performance, respectively. Biomechanical measures of fine force and MVCF performance in adult stroke survivors provide valuable information on the profile of residual motor function which can help inform clinical treatment strategies and quantitatively monitor the efficacy of rehabilitation or neuroprotection strategies.


Assuntos
Técnicas Biossensoriais , Contração Isométrica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Adulto , Idoso , Estudos de Coortes , Dedos/fisiopatologia , Força da Mão/fisiologia , Humanos , Lábio/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Polegar/fisiopatologia , Tecnologia sem Fio
3.
J Biomech ; 72: 81-89, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29526460

RESUMO

The relation among several parameters of the ramp-and-hold isometric force contraction (peak force and dF/dtmax during the initial phase of force recruitment, and the proportion of hold-phase at target) was quantified for the right and left thumb-index finger pinch, and lower lip midline compression in 40 neurotypical right-handed young adults (20 female/20 males) using wireless force sensors and data acquisition technology developed in our laboratory. In this visuomotor control task, participants produced ramp-and-hold isometric forces as 'rapidly and accurately' as possible to end-point target levels at 0.25, 0.5, 1 and 2 Newtons presented to a computer monitor in a randomized block design. Significant relations were found between the parameters of the ramp-and-hold lip force task and target force level, including the peak rate of force change (dF/dtmax), peak force, and the criterion percentage of force within ±5% of target during the contraction hold phase. A significant performance advantage was found among these force variables for the thumb-index finger over the lower lip. The maximum voluntary compression force (MVCF) task revealed highly significant differences in force output between the thumb-index fingers and lower lip (∼4.47-4.70 times greater for the digits versus lower lip), a significant advantage of the right thumb-index finger over the non-dominant left thumb-index finger (12% and 25% right hand advantage for males and females, respectively), and a significant sex difference (∼1.65-1.73 times greater among males).


Assuntos
Dedos/fisiologia , Lábio , Adulto , Fenômenos Biomecânicos , Computadores , Feminino , Humanos , Contração Isométrica , Masculino , Desempenho Psicomotor , Caracteres Sexuais , Adulto Jovem
4.
Brain Res ; 1677: 58-73, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958864

RESUMO

Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.


Assuntos
Encéfalo/fisiologia , Face/fisiologia , Percepção do Tato/fisiologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Desenho de Equipamento , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Física/instrumentação , Adulto Jovem
5.
PLoS One ; 12(8): e0183532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841675

RESUMO

Neurons in the somatosensory cortex are exquisitely sensitive to mechanical stimulation of the skin surface. The location, velocity, direction, and adaptation of tactile stimuli on the skin's surface are discriminable features of somatosensory processing, however the representation and processing of dynamic tactile arrays in the human somatosensory cortex are poorly understood. The principal aim of this study was to map the relation between dynamic saltatory pneumatic stimuli at discrete traverse velocities on the glabrous hand and the resultant pattern of evoked BOLD response in the human brain. Moreover, we hypothesized that the hand representation in contralateral Brodmann Area (BA) 3b would show a significant dependence on stimulus velocity. Saltatory pneumatic pulses (60 ms duration, 9.5 ms rise/fall) were repetitively sequenced through a 7-channel TAC-Cell array at traverse velocities of 5, 25, and 65 cm/s on the glabrous hand initiated at the tips of D2 (index finger) and D3 (middle finger) and sequenced towards the D1 (thumb). The resulting hemodynamic response was sampled during 3 functional MRI scans (BOLD) in 20 neurotypical right-handed adults at 3T. Results from each subject were inserted to the one-way ANOVA within-subjects and one sample t-test to evaluate the group main effect of all three velocities stimuli and each of three different velocities, respectively. The stimulus evoked BOLD response revealed a dynamic representation of saltatory pneumotactile stimulus velocity in a network consisting of the contralateral primary hand somatosensory cortex (BA3b), associated primary motor cortex (BA4), posterior insula, and ipsilateral deep cerebellum. The spatial extent of this network was greatest at the 5 and 25 cm/s pneumotactile stimulus velocities.


Assuntos
Mãos/fisiologia , Córtex Somatossensorial/fisiologia , Tato , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Física/métodos , Adulto Jovem
6.
Brain Res ; 1622: 81-90, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26119917

RESUMO

Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Estimulação Elétrica/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Face/fisiologia , Nervo Trigêmeo/fisiologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Mecanorreceptores/fisiologia , Plasticidade Neuronal/fisiologia , Fenômenos Fisiológicos da Pele , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA