Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Water Res ; 257: 121689, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723350

RESUMO

With the global concerns on antibiotic resistance (AR) as a public health issue, it is pivotal to have data exchange platforms for studies on antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. For this purpose, the NORMAN Association is hosting the NORMAN ARB&ARG database, which was developed within the European project ANSWER. The present article provides an overview on the database functionalities, the extraction and the contribution of data to the database. In this study, AR data from three studies from China and Nepal were extracted and imported into the NORMAN ARB&ARG in addition to the existing AR data from 11 studies (mainly European studies) on the database. This feasibility study demonstrates how the scientific community can share their data on AR to generate an international evidence base to inform AR mitigation strategies. The open and FAIR data are of high potential relevance for regulatory applications, including the development of emission limit values / environmental quality standards in relation to AR. The growth in sharing of data and analytical methods will foster collaboration on risk management of AR worldwide, and facilitate the harmonization in the effort for identification and surveillance of critical hotspots of AR. The NORMAN ARB&ARG database is publicly available at: https://www.norman-network.com/nds/bacteria/.


Assuntos
Resistência Microbiana a Medicamentos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , China , Genes Bacterianos
2.
Appl Environ Microbiol ; 90(5): e0222223, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624199

RESUMO

Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE: The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.


Assuntos
Ascomicetos , Burkholderia cenocepacia , Doenças das Plantas , Ascomicetos/genética , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Antibiose , Família Multigênica
3.
Pest Manag Sci ; 80(6): 2804-2816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323791

RESUMO

BACKGROUND: Fungal phytopathogens are a significant threat to crops and food security, and there is a constant need to develop safe and effective compounds that antagonize them. In-planta assays are complex and tedious and are thus not suitable for initial high-throughput screening of new candidate antifungal compounds. We propose an in vitro screening pipeline that integrates five rapid quantitative and qualitative methods to estimate the efficacy and mode of action of prospective antifungal compounds. RESULTS: The pipeline was evaluated using five documented antifungal compounds (benomyl, catechol, cycloheximide, 2,4-diacetylphloroglucinol, and phenylacetic acid) that have different modes of action and efficacy, against the model soilborne fungal pathogen Fusarium oxysporum f. sp. radicis cucumerinum. We initially evaluated the five compounds' ability to inhibit fungal growth and metabolic activity using green fluorescent protein (GFP)-labeled F. oxysporum and PrestoBlue staining, respectively, in multiwell plate assays. We tested the compounds' inhibition of both conidial germination and hyphal elongation. We then employed FUN-1 and SYTO9/propidium iodide staining, coupled to confocal microscopy, to differentiate between fungal growth inhibition and death at the cellular level. Finally, using a reactive oxygen species (ROS)-detection assay, we were able to quantify ROS production in response to compound application. CONCLUSIONS: Collectively, the proposed pipeline provides a wide array of quantitative and qualitative data on the tested compounds that can help pinpoint promising novel compounds; these can then be evaluated more vigorously using in planta screening assays. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fusarium , Fusarium/efeitos dos fármacos , Fungicidas Industriais/farmacologia
4.
Water Res X ; 21: 100203, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098886

RESUMO

Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.

5.
Water Res ; 247: 120761, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918195

RESUMO

Urban wastewater treatment plants (UWTPs) are essential for reducing the pollutants load and protecting water bodies. However, wastewater catchment areas and UWTPs emit continuously antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), with recognized impacts on the downstream environments. Recently, the European Commission recommended to monitor antibiotic resistance in UWTPs serving more than 100 000 population equivalents. Antibiotic resistance monitoring in environmental samples can be challenging. The expected complexity of these systems can jeopardize the interpretation capacity regarding, for instance, wastewater treatment efficiency, impacts of environmental contamination, or risks due to human exposure. Simplified monitoring frameworks will be essential for the successful implementation of analytical procedures, data analysis, and data sharing. This study aimed to test a set of biomarkers representative of ARG contamination, selected based on their frequent human association and, simultaneously, rare presence in pristine environments. In addition to the 16S rRNA gene, ten potential biomarkers (intI1, sul1, ermB, ermF, aph(3'')-Ib, qacEΔ1, uidA, mefC, tetX, and crAssphage) were monitored in DNA extracts (n = 116) from raw wastewater, activated sludge, treated wastewater, and surface water (upstream and downstream of UWTPs) samples collected in the Czech Republic, Denmark, Israel, the Netherlands, and Portugal. Each biomarker was sensitive enough to measure decreases (on average by up to 2.5 log-units gene copy/mL) from raw wastewater to surface water, with variations in the same order of magnitude as for the 16S rRNA gene. The use of the 10 biomarkers allowed the typing of water samples whose origin or quality could be predicted in a blind test. The results show that, based on appropriate biomarkers, qPCR can be used for a cost-effective and technically accessible approach to monitoring wastewater and the downstream environment.


Assuntos
Genes Bacterianos , Águas Residuárias , Humanos , RNA Ribossômico 16S/genética , Antagonistas de Receptores de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/análise , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Antibacterianos/análise , Água/análise
7.
Microbiol Resour Announc ; 12(10): e0035123, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37787537

RESUMO

This manuscript reports the complete genome sequence of a Salmonella enterica subsp. enterica serovar Typhimurium strain (designated "Bnaya"), isolated from a dead dairy calf with severe diarrhea in Israel. The isolate exhibited multi-drug resistance, which is highly unusual in bovine Salmonella spp. in Israel, prompting further investigation.

8.
ISME Commun ; 3(1): 94, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660098

RESUMO

Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.

9.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310875

RESUMO

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos
10.
Appl Environ Microbiol ; 89(6): e0017023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37199629

RESUMO

Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL-1, respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs. IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater.


Assuntos
Microbiota , Águas Residuárias , Esgotos/microbiologia , Antagonistas de Receptores de Angiotensina , Genes Bacterianos , RNA Ribossômico 16S/genética , Escherichia coli/genética , Polipropilenos , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética
11.
Front Microbiol ; 14: 996287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846749

RESUMO

Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S-10, S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic effects against three soilborne plant pathogens models: Pythium aphanidermatum (oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum (ascomycete). To identify genetic mechanisms potentially responsible for the differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced and compared their genomes, and that of strain UW85 using a hybrid sequencing pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite and chitinase-encoding genes that could potentially explain observed differences in in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene cluster. The UW85 mega-plasmid contained more ABC transporters than the other two strains, whereas the S-25 mega-plasmid carried a unique cluster containing cellulose and chitin degrading genes. Collectively, comparative genomics revealed several mechanisms that can potentially explain differences in in-vitro antagonism of Bcsl strains toward fungal plant pathogens.

12.
Environ Toxicol Chem ; 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36582150

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2023;00:1-16. © 2022 SETAC.

13.
Sci Data ; 9(1): 652, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289228

RESUMO

Freshwater bodies are critical components of terrestrial ecosystems. The microbial communities of freshwater ecosystems are intimately linked water quality. These microbes interact with, utilize and recycle inorganic elements and organic matter. Here, we present three metagenomic sequence datasets (total of 182.9 Gbp) from different freshwater environments in Israel. The first dataset is from diverse freshwater bodies intended for different usages - a nature reserve, irrigation and aquaculture facilities, a tertiary wastewater treatment plant and a desert rainfall reservoir. The second represents a two-year time-series, collected during 2013-2014 at roughly monthly intervals, from a water reservoir connected to an aquaculture facility. The third is from several time-points during the winter and spring of 2015 in Lake Kinneret, including a bloom of the cyanobacterium Microcystis sp. These datasets are accompanied by physical, chemical, and biological measurements at each sampling point. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of freshwater microbial ecosystems and inform future water quality management approaches.


Assuntos
Cianobactérias , Metagenoma , Ecossistema , Israel , Lagos
14.
Comput Struct Biotechnol J ; 19: 6201-6211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900133

RESUMO

Farmers apply broiler chicken litter to soils to enrich organic matter and provide crops with nutrients, following varying periods of stockpiling. However, litter frequently harbors fecal-derived microbial pathogens and associated antibiotic resistance genes (ARGs), and may be a source of microbial contamination of produce. We coupled a cutting-edge Loop Genomics long-read 16S rRNA amplicon-sequencing platform with high-throughput qPCR that targeted a suite of ARGs, to assess temporal (five time points over a 60-day period) and spatial (top, middle and bottom layers) microbiome and resistome dynamics in a broiler litter stockpile. We focused on potentially pathogenic species from the Enterobacteriaceae, Enterococcaceae and Staphylococcaceae families associated with food-borne disease. Bacterial diversity was significantly lower in the middle of the stockpile, where targeted pathogens were lowest and Bacillaceae were abundant. E. coli was the most abundant Enterobacteriaceae species, and high levels of the opportunistic pathogen Enterococcus faecium were detected. Correlation analyses revealed that the latter was significantly associated with aminoglycoside (aac(6')-Ib(aka aacA4), aadA5), tetracycline (tetG), vancomycin (vanC), phenicol (floR) and MLSB (mphB) resistance genes. Staphylococcaceae were primarily non-pathogenic, but extremely low levels of the opportunistic pathogen S. aureus were detected, as was the opportunistic pathogen S. saprophyticus, which was linked to vancomycin (vanSA, vanC1), MLSB (vatE, ermB) and tetracycline (tetK) resistance genes. Collectively, we found that stockpile microbiomes and resistomes are strongly dictated by temporal fluctuations and spatial heterogeneity. Insights from this study can be exploited to improve stockpile management practice to support sustainable antimicrobial resistance mitigation policies in the future.

15.
Microbiome ; 9(1): 178, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454634

RESUMO

BACKGROUND: Therapeutic and growth-promoting antibiotics are frequently used in broiler production. Indirect evidence indicates that these practices are linked to the proliferation of antimicrobial resistance (AMR), the spread of antibiotic-resistant bacteria from food animals to humans, and the environment, but there is a lack of comprehensive experimental data supporting this. We investigated the effects of growth promotor (bacitracin) and therapeutic (enrofloxacin) antibiotic administration on AMR in broilers for the duration of a production cycle, using a holistic approach that integrated both culture-dependent and culture-independent methods. We specifically focused on pathogen-harboring families (Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae). RESULTS: Antibiotic-resistant bacteria and antibiotic resistance genes were ubiquitous in chicken cloaca and litter regardless of antibiotic administration. Environment (cloaca vs. litter) and growth stage were the primary drivers of variation in the microbiomes and resistomes, with increased bacterial diversity and a general decrease in abundance of the pathogen-harboring families with age. Bacitracin-fed groups had higher levels of bacitracin resistance genes and of vancomycin-resistant Enterococcaceae (total Enterococcaceae counts were not higher). Although metagenomic analyses classified 28-76% of the Enterococcaceae as the commensal human pathogens E. faecalis and E. faecium, culture-based analysis suggested that approximately 98% of the vancomycin-resistant Enterococcaceae were avian and not human-associated, suggesting differences in the taxonomic profiles of the resistant and non-resistant strains. Enrofloxacin treatments had varying effects, but generally facilitated increased relative abundance of multidrug-resistant Enterobacteriaceae strains, which were primarily E. coli. Metagenomic approaches revealed a diverse array of Staphylococcus spp., but the opportunistic pathogen S. aureus and methicillin resistance genes were not detected in culture-based or metagenomic analyses. Camphylobacteriaceae were significantly more abundant in the cloacal samples, especially in enrofloxacin-treated chickens, where a metagenome-assembled C. jejuni genome harboring fluoroquinolone and ß-lactam resistance genes was identified. CONCLUSIONS: Within a "farm-to-fork, one health" perspective, considering the evidence that bacitracin and enrofloxacin used in poultry production can select for resistance, we recommend their use be regulated. Furthermore, we suggest routine surveillance of ESBL E. coli, vancomycin-resistant E. faecalis and E. faecium, and fluoroquinolone-resistant C. jejuni strains considering their pathogenic nature and capacity to disseminate AMR to the environment. Video Abstract.


Assuntos
Antibacterianos/uso terapêutico , Galinhas , Farmacorresistência Bacteriana , Microbiota , Animais , Cloaca/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Estudos Longitudinais , Staphylococcus aureus
16.
Front Microbiol ; 12: 679743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248892

RESUMO

Aquaculture facilities such as fishponds are one of the most anthropogenically impacted freshwater ecosystems. The high fish biomass reared in aquaculture is associated with an intensive input into the water of fish-feed and fish excrements. This nutrients load may affect the microbial community in the water, which in turn can impact the fish health. To determine to what extent aquaculture practices and natural seasonal cycles affect the microbial populations, we characterized the microbiome of an inter-connected aquaculture system at monthly resolution, over 3 years. The system comprised two fishponds, where fish are grown, and an operational water reservoir in which fish are not actively stocked. Clear natural seasonal cycles of temperature and inorganic nutrients concentration, as well as recurring cyanobacterial blooms during summer, were observed in both the fishponds and the reservoir. The structure of the aquatic bacterial communities in the system, characterized using 16S rRNA sequencing, was explained primarily by the natural seasonality, whereas aquaculture-related parameters had only a minor explanatory power. However, the cyanobacterial blooms were characterized by different cyanobacterial clades dominating at each fishpond, possibly in response to distinct nitrogen and phosphate ratios. In turn, nutrient ratios may have been affected by the magnitude of fish feed input. Taken together, our results show that, even in strongly anthropogenically impacted aquatic ecosystems, the structure of bacterial communities is mainly driven by the natural seasonality, with more subtle effects of aquaculture-related factors.

17.
Front Microbiol ; 12: 651891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889143

RESUMO

The genus Flavobacterium is characterized by the capacity to metabolize complex organic compounds and a unique gliding motility mechanism. Flavobacteria are often abundant in root microbiomes of various plants, but the factors contributing to this high abundance are currently unknown. In this study, we evaluated the effect of various plant-associated poly- and mono-saccharides on colony expansion of two Flavobacterium strains. Both strains were able to spread on pectin and other polysaccharides such as microcrystalline cellulose. However, only pectin (but not pectin monomers), a component of plant cell walls, enhanced colony expansion on solid surfaces in a dose- and substrate-dependent manner. On pectin, flavobacteria exhibited bi-phasic motility, with an initial phase of rapid expansion, followed by growth within the colonized area. Proteomic and gene expression analyses revealed significant induction of carbohydrate metabolism related proteins when flavobacteria were grown on pectin, including selected SusC/D, TonB-dependent glycan transport operons. Our results show a positive correlation between colony expansion and the upregulation of proteins involved in sugar uptake, suggesting an unknown linkage between specific operons encoding for glycan uptake and metabolism and flavobacterial expansion. Furthermore, within the context of flavobacterial-plant interactions, they suggest that pectin may facilitate flavobacterial expansion on plant surfaces in addition to serving as an essential carbon source.

18.
Environ Sci Technol ; 55(10): 6814-6827, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33904706

RESUMO

Treated-wastewater (TW) irrigation transfers antibiotic-resistant bacteria (ARB) to soil, but persistence of these bacteria is generally low due to resilience of the soil microbiome. Nonetheless, wastewater-derived bacteria and associated antibiotic resistance genes (ARGs) may persist below detection levels and potentially proliferate under copiotrophic conditions. To test this hypothesis, we exposed soils from microcosm, lysimeter, and field experiments to short-term enrichment in copiotroph-stimulating media. In microcosms, enrichment stimulated growth of multidrug-resistant Escherichia coli up to 2 weeks after falling below detection limits. Lysimeter and orchard soils irrigated in-tandem with either freshwater or TW were subjected to culture-based, qPCR and shotgun metagenomic analyses prior, and subsequent, to enrichment. Although native TW- and freshwater-irrigated soil microbiomes and resistomes were similar to each other, enrichment resulted in higher abundances of cephalosporin- and carbapenem-resistant Enterobacteriaceae and in substantial differences in the composition of microbial communities and ARGs. Enrichment stimulated ARG-harboring Bacillaceae in the freshwater-irrigated soils, whereas in TWW-irrigated soils, ARG-harboring γ-proteobacterial families Enterobacteriaceae and Moraxellaceae were more profuse. We demonstrate that TW-derived ARB and associated ARGs can persist at below detection levels in irrigated soils and believe that similar short-term enrichment strategies can be applied for environmental antimicrobial risk assessment in the future.


Assuntos
Solo , Águas Residuárias , Irrigação Agrícola , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Microbiologia do Solo , Águas Residuárias/análise
19.
mSystems ; 5(6)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33361322

RESUMO

Polyketides (PKs) and nonribosomal peptides (NRPs) are two microbial secondary metabolite (SM) families known for their variety of functions, including antimicrobials, siderophores, and others. Despite their involvement in bacterium-bacterium and bacterium-plant interactions, root-associated SMs are largely unexplored due to the limited cultivability of bacteria. Here, we analyzed the diversity and expression of SM-encoding biosynthetic gene clusters (BGCs) in root microbiomes by culture-independent amplicon sequencing, shotgun metagenomics, and metatranscriptomics. Roots (tomato and lettuce) harbored distinct compositions of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) relative to the adjacent bulk soil, and specific BGC markers were both enriched and highly expressed in the root microbiomes. While several of the highly abundant and expressed sequences were remotely associated with known BGCs, the low similarity to characterized genes suggests their potential novelty. Low-similarity genes were screened against a large set of soil-derived cosmid libraries, from which five whole BGCs of unknown function were retrieved. Three clusters were taxonomically affiliated with Actinobacteria, while the remaining were not associated with known bacteria. One Streptomyces-derived BGC was predicted to encode a polyene with potential antifungal activity, while the others were too novel to predict chemical structure. Screening against a suite of metagenomic data sets revealed higher abundances of retrieved clusters in roots and soil samples. In contrast, they were almost completely absent in aquatic and gut environments, supporting the notion that they might play an important role in root ecosystems. Overall, our results indicate that root microbiomes harbor a specific assemblage of undiscovered SMs.IMPORTANCE We identified distinct secondary-metabolite-encoding genes that are enriched (relative to adjacent bulk soil) and expressed in root ecosystems yet almost completely absent in human gut and aquatic environments. Several of the genes were distantly related to genes encoding antimicrobials and siderophores, and their high sequence variability relative to known sequences suggests that they may encode novel metabolites and may have unique ecological functions. This study demonstrates that plant roots harbor a diverse array of unique secondary-metabolite-encoding genes that are highly enriched and expressed in the root ecosystem. The secondary metabolites encoded by these genes might assist the bacteria that produce them in colonization and persistence in the root environment. To explore this hypothesis, future investigations should assess their potential role in interbacterial and bacterium-plant interactions.

20.
Microorganisms ; 8(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322131

RESUMO

Excessive use of antimicrobials in aquaculture is concerning, given possible environmental ramifications and the potential contribution to the spread of antimicrobial resistance (AR). In this study, we explored seasonal abundance of antimicrobial resistance genes and bacterial community composition in the water column of an intensive aquaculture pond stocked with Silver Carp (Hypophthalmichthys molitrix) prophylactically treated with sulfamethoprim (25% sulfadiazine; 5% trimethoprim), relative to an adjacent unstocked reservoir. Bacterial community composition was monitored using high-throughput sequencing of 16S rRNA gene amplicons in eight sampling profiles to determine seasonal dynamics, representing principal stages in the fish fattening cycle. In tandem, qPCR was applied to assess relative abundance of selected antimicrobial resistance genes (sul1, sul2, dfrA1, tetA and blaTEM) and class-1 integrons (int1). Concomitantly, resistomes were extrapolated from shotgun metagenomes in representative profiles. Analyses revealed increased relative abundance of sulfonamide and tetracycline resistance genes in fishpond-03, relative to pre-stocking and reservoir levels, whereas no significant differences were observed for genes encoding resistance to antimicrobials that were not used in the fishpond-03. Seasons strongly dictated bacterial community composition, with high abundance of cyanobacteria in summer and increased relative abundance of Flavobacterium in the winter. Our results indicate that prophylactic use of sulfonamides in intensive aquaculture ponds facilitates resistance suggesting that prophylactic use of these antimicrobials in aquaculture should be restricted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA