Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transplant Direct ; 10(6): e1633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38807861

RESUMO

Background: Ex vivo kidney perfusion is an evolving platform that demonstrates promise in preserving and rehabilitating the kidney grafts. Despite this, there is little consensus on the optimal perfusion conditions. Hypothermic perfusion offers limited functional assessment, whereas normothermic perfusion requires a more complex mechanical system and perfusate. Subnormothermic machine perfusion (SNMP) has the potential to combine the advantages of both approaches but has undergone limited investigation. Therefore, the present study sought to determine the suitability of SNMP for extended kidney preservation. Methods: SNMP at 22-25 °C was performed on a portable device for 24 h with porcine kidneys. Graft assessment included measurement of mechanical parameters and biochemical analysis of the perfusate using point-of-care tests. To investigate the viability of kidneys preserved by SNMP, porcine kidney autotransplants were performed in a donation after circulatory death (DCD) model. SNMP was also compared with static cold storage (SCS). Finally, follow-up experiments were conducted in a subset of human kidneys to test the translational significance of findings in porcine kidneys. Results: In the perfusion-only cohort, porcine kidneys all displayed successful perfusion for 24 h by SNMP, evidenced by stable mechanical parameters and biological markers of graft function. Furthermore, in the transplant cohort, DCD grafts with 30 min of warm ischemic injury demonstrated superior posttransplant graft function when preserved by SNMP in comparison with SCS. Finally, human kidneys that underwent 24-h perfusion exhibited stable functional and biological parameters consistent with observations in porcine organs. Conclusions: These observations demonstrate the suitability and cross-species generalizability of subnormothermic machine perfusion to maintain stable kidney perfusion and provide foundational evidence for improved posttransplant graft function of DCD kidneys after SNMP compared with SCS.

2.
Front Med (Lausanne) ; 9: 804834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280912

RESUMO

Background: Subnormothermic machine perfusion (SNMP) of liver grafts is currently less clinically developed than normothermic and hypothermic approaches, but may have logistical advantages. At intermediate temperatures, the oxygen demand of the graft is low enough to be satisfied with an acellular perfusate, obviating the need for oxygen carrying molecules. This intermediate metabolic rate, however, is sufficient to support the production of bile, which is emerging as an important indicator of graft injury and viability. In this study, we hypothesized that the biliary compartment would be more sensitive than perfusate in detecting graft injury during SNMP. Methods: To test this hypothesis in a rat model, we performed liver transplants with DCD and control liver grafts after 1 h of acellular room temperature machine perfusion (acRTMP) or static cold storage (SCS). Point of care liver function tests were measured in biliary and perfusate samples after 1 h of machine perfusion. Following transplantation, rats were sacrificed at 24 h for assessment of post-transplant graft function and histology. Results: All point-of-care liver function tests were significantly more concentrated in the biliary compartment than the perfusate compartment during acRTMP. DCD liver grafts could be distinguished from control liver grafts by significantly higher markers of hepatocyte injury (AST, ALT) in the biliary compartment, but not in the perfusate compartment. Classical markers of cholangiocyte injury, such as gammy-glut amyl transferase (GGT), amylase (AML), and alkaline phosphatase were detectable in the biliary compartment, but not in the perfusate compartment. In comparison to SCS, graft preservation by acRTMP produced a significant survival benefit in DCD liver transplantation (75 vs. 0%, p < 0.0030). Conclusion: Together, these findings demonstrate that during acRTMP, the biliary compartment may be a more sensitive indicator of graft injury than the perfusate compartment. Moreover, acRTMP provides superior graft preservation to SCS in rat DCD liver transplantation.

3.
Hepatol Commun ; 5(9): 1527-1542, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34510831

RESUMO

Normothermic machine perfusion (NMP) provides clinicians an opportunity to assess marginal livers before transplantation. However, objective criteria and point-of-care (POC) biomarkers to predict risk and guide decision making are lacking. In this investigation, we characterized trends in POC biomarkers during NMP and compared primate donation after circulatory death (DCD) livers with short and prolonged warm ischemic injury. Following asystole, livers were subjected to either 5 minutes (DCD-5min, n = 4) or 45 minutes (DCD-45min, n = 4) of warm ischemia time. Livers were flushed with heparinized UW solution, and preserved in cold storage before NMP. During flow-controlled NMP, circulating perfusate and tissue biopsies were collected at 0, 2, 4, 6, and 8 hours for analysis. DCD-45min livers had greater terminal portal vein pressure (8.5 vs. 13.3 mm Hg, P = 0.027) and terminal portal vein resistance (16.3 vs. 32.4 Wood units, P = 0.005). During perfusion, DCD-45min livers had equivalent terminal lactate clearance (93% vs. 96%, P = 0.344), greater terminal alanine aminotransferase (163 vs. 883 U/L, P = 0.002), and greater terminal perfusate gamma glutamyltransferase (GGT) (5.0 vs. 31.7 U/L, P = 0.002). DCD-45min livers had higher circulating levels of flavin mononucleotide (FMN) at hours 2 and 4 of perfusion (136 vs. 250 ng/mL, P = 0.029; and 158 vs. 293 ng/mL, P = 0.003; respectively). DCD-5min livers produced more bile and demonstrated progressive decline in bile lactate dehydrogenase, whereas DCD-45min livers did not. On blinded histologic evaluation, DCD-45min livers demonstrated greater injury and necrosis at late stages of perfusion, indicative of nonviability. Conclusion: Objective criteria are needed to define graft viability during NMP. Perfusate lactate clearance does not discriminate between viable and nonviable livers during NMP. Perfusate GGT and FMN may represent POC biomarkers predictive of liver injury during NMP.

4.
J Adolesc Health ; 67(2): 300-301, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669235
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA