Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(5): 805-816, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36579830

RESUMO

Phloem loading and sugar distribution are key steps for carbon partitioning in herbaceous and woody species. Although the phloem loading mechanisms in herbs are well studied, less is known for trees. It was shown for saplings of Fagus sylvatica L. and Quercus robur L. that the sucrose concentration in the phloem sap was higher than in the mesophyll cells, which suggests that phloem loading of sucrose involves active steps. However, the question remains whether this also applies for tall trees. To approach this question, tissue-specific sugar and starch contents of small and tall trees of F. sylvatica and Q. robur as well as the sugar concentration in the subcellular compartments of mesophyll cells were examined. Moreover, sucrose uptake transporters (SUTs) were analyzed by heterology expression in yeast and the tissue-specific expressions of SUTs were investigated. Sugar content in leaves of the canopy (11 and 26 m height) was up to 25% higher compared with that of leaves of small trees of F. sylvatica and Q. robur (2 m height). The sucrose concentration in the cytosol of mesophyll cells from tall trees was between 120 and 240 mM and about 4- to 8-fold lower than the sucrose concentration in the phloem sap of saplings. The analyzed SUT sequences of both tree species cluster into three types, similar to SUTs from other plant species. Heterologous expression in yeast confirmed that all analyzed SUTs are functional sucrose transporters. Moreover, all SUTs were expressed in leaves, bark and wood of the canopy and the expression levels in small and tall trees were similar. The results show that the phloem loading in leaves of tall trees of F. sylvatica and Q. robur probably involves active steps, because there is an uphill concentration gradient for sucrose. SUTs may be involved in phloem loading.


Assuntos
Fagus , Quercus , Árvores/metabolismo , Açúcares/metabolismo , Sacarose/metabolismo , Fagus/metabolismo , Quercus/metabolismo , Saccharomyces cerevisiae , Floema/metabolismo , Proteínas de Membrana Transportadoras , Transporte Biológico , Carboidratos , Folhas de Planta/metabolismo
2.
EMBO Rep ; 23(6): e54105, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35373503

RESUMO

Maintenance and homeostasis of the stem cell niche (SCN) in the Arabidopsis root is essential for growth and development of all root cell types. The SCN is organized around a quiescent center (QC) maintaining the stemness of cells in direct contact. The key transcription factors (TFs) WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and PLETHORAs (PLTs) are expressed in the SCN where they maintain the QC and regulate distal columella stem cell (CSC) fate. Here, we describe the concerted mutual regulation of the key TFs WOX5 and PLTs on a transcriptional and protein interaction level. Additionally, by applying a novel SCN staining method, we demonstrate that both WOX5 and PLTs regulate root SCN homeostasis as they control QC quiescence and CSC fate interdependently. Moreover, we uncover that some PLTs, especially PLT3, contain intrinsically disordered prion-like domains (PrDs) that are necessary for complex formation with WOX5 and its recruitment to subnuclear microdomains/nuclear bodies (NBs) in the CSCs. We propose that this partitioning of PLT-WOX5 complexes to NBs, possibly by phase separation, is important for CSC fate determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema , Raízes de Plantas , Nicho de Células-Tronco , Células-Tronco/metabolismo
3.
Tree Physiol ; 39(2): 284-299, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388274

RESUMO

In temperate woody species, carbon transport from source to sink tissues is a striking physiological process, particularly considering seasonal changes. The functions of different tissues can also alternate across the seasons. In this regard, phloem loading and sugar distribution are important aspects of carbon partitioning, and sucrose uptake transporters (SUTs) play a key role in these processes. Therefore, the influence of seasons and different light-dark conditions on the expression of SUTs from 3-year-old Fagus sylvatica L., Quercus robur L. and Picea abies (L.) Karst. trees were analyzed. In addition, tissue-specific sugar and starch contents under these different environmental conditions were determined. Putative SUTs were identified in the gymnosperms (Picea abies, Ginkgo biloba L.), here for the first time, and also in the angiosperms (Q. robur, F. sylvatica). The identified SUT sequences of the different tree species cluster into three types, similar to other SUTs from herbaceous and tree species. Furthermore, the sequences from angiosperm and those from gymnosperm species form distinct clusters within the three types of SUTs. In F. sylvatica, Q. robur and P. abies, the expression levels of the different SUTs during seasons showed marked variations. Because of the high expression levels of type I SUTs in bark, wood and leaves during active growing phases in spring and summer, it can be assumed that they are involved in phloem loading, sucrose retrieval and possibly in further physiological processes. The expression patterns also indicate a flexible expression in all tissues depending on physiological requirements and environmental conditions. Compared with type I SUTs, the seasonal variations of type II SUT expression were less pronounced, whereas the seasonal variations of the type III SUT expression patterns were partly reverse. In addition to the seasonal regulation, the expressions of the different SUTs were also regulated by light in a diurnal manner.


Assuntos
Fagus/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Picea/metabolismo , Quercus/metabolismo , Sacarose/metabolismo , Árvores/metabolismo , DNA Complementar , DNA de Plantas , Escuridão , Luz , Proteínas de Membrana Transportadoras/genética , Filogenia , Estações do Ano , Açúcares/metabolismo , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA