Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 29: 115865, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285410

RESUMO

Recent years have seen a resurgence in drug discovery efforts aimed at the identification of covalent inhibitors which has led to an explosion of literature reports in this area and most importantly new approved therapies. These reports and breakthroughs highlight the significant investments made across the industry in SAR campaigns to optimize inhibitors. The potency of covalent inhibitors is generally considered to be more accurately described by the time-independent kinetic parameter kinact/Ki rather than a by a simple IC50 since the latter is a time-dependent parameter. Enzyme substrate concentrations are an additional important factor to consider when attempting to translate parameters derived from enzymology experiments to phenotypic behavior in a physiologically relevant cell-based system. Theoretical and experimental investigations into the relationship between IC50, time, substrate concentration and Kinact/Ki provided us with an effective approach to provide meaningful data for SAR optimization. The data we generated for our JAK3 irreversible covalent inhibitor program using IC50 values provided by enzyme assays with long incubations (>1h) coupled with physiological substrate concentration provided the medicinal chemist with optimal information in a rapid and efficient manner. We further document the wide applicability of this method by applying it to other enzymes systems where we have run covalent inhibitor programs.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Janus Quinase 3/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes , Relação Estrutura-Atividade
2.
Structure ; 27(11): 1625-1633.e3, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693911

RESUMO

E7820 and indisulam are two examples of aryl sulfonamides that recruit RBM39 to Rbx-Cul4-DDA1-DDB1-DCAF15 E3 ligase complex, leading to its ubiquitination and degradation by the proteasome. To understand their mechanism of action, we performed kinetic analysis on the recruitment of RBM39 to DCAF15 and solved a crystal structure of DDA1-DDB1-DCAF15 in complex with E7820 and the RRM2 domain of RBM39. E7820 packs in a shallow pocket on the surface of DCAF15 and the resulting modified interface binds RBM39 through the α1 helix of the RRM2 domain. Our kinetic studies revealed that aryl sulfonamide and RBM39 bind to DCAF15 in a synergistic manner. The structural and kinetic studies confirm aryl sulfonamides as molecular glues in the recruitment of RBM39 and provide a framework for future efforts to utilize DCAF15 to degrade other proteins of interest.


Assuntos
Indóis/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Ligação a RNA/química , Sulfonamidas/química , Sítios de Ligação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo
3.
J Med Chem ; 62(15): 6876-6893, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31282155

RESUMO

The hypoxia-inducible factor 2α (HIF-2α) is a key oncogenic driver in clear cell renal cell carcinoma (ccRCC). Our first HIF-2α inhibitor PT2385 demonstrated promising proof of concept clinical activity in heavily pretreated advanced ccRCC patients. However, PT2385 was restricted by variable and dose-limited pharmacokinetics resulting from extensive metabolism of PT2385 to its glucuronide metabolite. Herein we describe the discovery of second-generation HIF-2α inhibitor PT2977 with increased potency and improved pharmacokinetic profile achieved by reduction of phase 2 metabolism. Structural modification by changing the geminal difluoro group in PT2385 to a vicinal difluoro group resulted in enhanced potency, decreased lipophilicity, and significantly improved pharmacokinetic properties. In a phase 1 dose-escalation study, the clinical pharmacokinetics for PT2977 supports the hypothesis that attenuating the rate of glucuronidation would improve exposure and reduce variability in patients. Early evidence of clinical activity shows promise for PT2977 in the treatment of ccRCC.


Assuntos
Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Indanos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Sulfonas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Cães , Relação Dose-Resposta a Droga , Feminino , Haplorrinos , Humanos , Indanos/síntese química , Indanos/farmacologia , Neoplasias Renais/metabolismo , Camundongos , Camundongos SCID , Ratos , Sulfonas/síntese química , Sulfonas/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
J Med Chem ; 61(21): 9691-9721, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30289716

RESUMO

HIF-2α, a member of the HIF family of transcription factors, is a key oncogenic driver in cancers such as clear cell renal cell carcinoma (ccRCC). A signature feature of these cancers is the overaccumulation of HIF-2α protein, often by inactivation of the E3 ligase VHL (von Hippel-Lindau). Herein we disclose our structure based drug design (SBDD) approach that culminated in the identification of PT2385, the first HIF-2α antagonist to enter clinical trials. Highlights include the use of a putative n → π*Ar interaction to guide early analog design, the conformational restriction of an essential hydroxyl moiety, and the remarkable impact of fluorination near the hydroxyl group. Evaluation of select compounds from two structural classes in a sequence of PK/PD, efficacy, PK, and metabolite profiling identified 10i (PT2385, luciferase EC50 = 27 nM) as the clinical candidate. Finally, a retrospective crystallographic analysis describes the structural perturbations necessary for efficient antagonism.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma de Células Renais/patologia , Desenho de Fármacos , Indanos/química , Indanos/farmacologia , Neoplasias Renais/patologia , Sulfonas/química , Sulfonas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Linhagem Celular Tumoral , Cães , Indanos/farmacocinética , Camundongos , Modelos Moleculares , Conformação Proteica , Ratos , Relação Estrutura-Atividade , Sulfonas/farmacocinética , Distribuição Tecidual
5.
J Med Chem ; 60(5): 1971-1993, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28139931

RESUMO

Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Desenho de Fármacos , Humanos , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pirróis/administração & dosagem , Pirróis/farmacologia
6.
Cancer Res ; 76(18): 5491-500, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27635045

RESUMO

More than 90% of clear cell renal cell carcinomas (ccRCC) exhibit inactivation of the von Hippel-Lindau (pVHL) tumor suppressor, establishing it as the major underlying cause of this malignancy. pVHL inactivation results in stabilization of the hypoxia-inducible transcription factors, HIF1α and HIF2α, leading to expression of a genetic program essential for the initiation and progression of ccRCC. Herein, we describe the potent, selective, and orally active small-molecule inhibitor PT2385 as a specific antagonist of HIF2α that allosterically blocks its dimerization with the HIF1α/2α transcriptional dimerization partner ARNT/HIF1ß. PT2385 inhibited the expression of HIF2α-dependent genes, including VEGF-A, PAI-1, and cyclin D1 in ccRCC cell lines and tumor xenografts. Treatment of tumor-bearing mice with PT2385 caused dramatic tumor regressions, validating HIF2α as a pivotal oncogenic driver in ccRCC. Notably, unlike other anticancer agents that inhibit VEGF receptor signaling, PT2385 exhibited no adverse effect on cardiovascular performance. Thus, PT2385 represents a novel class of therapeutics for the treatment of RCC with potent preclincal efficacy as well as improved tolerability relative to current agents that target the VEGF pathway. Cancer Res; 76(18); 5491-500. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Animais , Antineoplásicos/química , Calorimetria , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase , Ensaios Antitumorais Modelo de Xenoenxerto
7.
ACS Chem Biol ; 9(7): 1552-8, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24814050

RESUMO

Kinases constitute an important class of therapeutic targets being explored both by academia and the pharmaceutical industry. The major focus of this effort was directed toward the identification of ATP competitive inhibitors. Although it has long been recognized that the intracellular concentration of ATP is very different from the concentrations utilized in biochemical enzyme assays, little thought has been devoted to incorporating this discrepancy into our understanding of translation from enzyme inhibition to cellular function. Significant work has been dedicated to the discovery of JAK kinase inhibitors; however, a disconnect between enzyme and cellular function is prominently displayed in the literature for this class of inhibitors. Herein, we demonstrate utilizing the four JAK family members that the difference in the ATP Km of each individual kinase has a significant impact on the enzyme to cell inhibition translation. We evaluated a large number of JAK inhibitors in enzymatic assays utilizing either 1 mM ATP or Km ATP for the four isoforms as well as in primary cell assays. This data set provided the opportunity to examine individual kinase contributions to the heterodimeric kinase complexes mediating cellular signaling. In contrast to a recent study, we demonstrate that for IL-15 cytokine signaling it is sufficient to inhibit either JAK1 or JAK3 to fully inhibit downstream STAT5 phosphorylation. This additional data thus provides a critical piece of information explaining why JAK1 has incorrectly been thought to have a dominant role over JAK3. Beyond enabling a deeper understanding of JAK signaling, conducting similar analyses for other kinases by taking into account potency at high ATP rather than Km ATP may provide crucial insights into a compound's activity and selectivity in cellular contexts.


Assuntos
Trifosfato de Adenosina/metabolismo , Janus Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 3/metabolismo , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Fator de Transcrição STAT5/metabolismo
8.
Biochem J ; 460(2): 211-22, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593284

RESUMO

ITK (interleukin-2-inducible T-cell kinase) is a critical component of signal transduction in T-cells and has a well-validated role in their proliferation, cytokine release and chemotaxis. ITK is an attractive target for the treatment of T-cell-mediated inflammatory diseases. In the present study we describe the discovery of kinase inhibitors that preferentially bind to an allosteric pocket of ITK. The novel ITK allosteric site was characterized by NMR, surface plasmon resonance, isothermal titration calorimetry, enzymology and X-ray crystallography. Initial screening hits bound to both the allosteric pocket and the ATP site. Successful lead optimization was achieved by improving the contribution of the allosteric component to the overall inhibition. NMR competition experiments demonstrated that the dual-site binders showed higher affinity for the allosteric site compared with the ATP site. Moreover, an optimized inhibitor displayed non-competitive inhibition with respect to ATP as shown by steady-state enzyme kinetics. The activity of the isolated kinase domain and auto-activation of the full-length enzyme were inhibited with similar potency. However, inhibition of the activated full-length enzyme was weaker, presumably because the allosteric site is altered when ITK becomes activated. An optimized lead showed exquisite kinome selectivity and is efficacious in human whole blood and proximal cell-based assays.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Sítio Alostérico , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
9.
J Med Chem ; 55(22): 10047-63, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23098091

RESUMO

We wish to report a strategy that targets interleukin-2 inducible T cell kinase (Itk) with covalent inhibitors. Thus far, covalent inhibition of Itk has not been disclosed in the literature. Structure-based drug design was utilized to achieve low nanomolar potency of the disclosed series even at high ATP concentrations. Kinetic measurements confirmed an irreversible binding mode with off-rate half-lives exceeding 24 h and moderate on-rates. The analogues are highly potent in a cellular IP1 assay as well as in a human whole-blood (hWB) assay. Despite a half-life of approximately 2 h in resting primary T cells, the covalent inhibition of Itk resulted in functional silencing of the TCR pathway for more than 24 h. This prolonged effect indicates that covalent inhibition is a viable strategy to target the inactivation of Itk.


Assuntos
Interleucina-2/farmacologia , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Linfócitos T/enzimologia , Desenho de Fármacos , Meia-Vida , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
10.
Bioorg Chem ; 38(6): 252-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20709352

RESUMO

The tautomerase superfamily consists of structurally homologous proteins that are characterized by a ß-α-ß fold and a catalytic amino-terminal proline. 4-Oxalocrotonate tautomerase (4-OT) family members have been identified and categorized into five subfamilies on the basis of multiple sequence alignments and the conservation of key catalytic and structural residues. Representative members from two subfamilies have been cloned, expressed, purified, and subjected to kinetic and structural characterization. The crystal structure of DmpI from Helicobacter pylori (HpDmpI), a 4-OT homolog in subfamily 3, has been determined to high resolution (1.8Å and 2.1Å) in two different space groups. HpDmpI is a homohexamer with an active site cavity that includes Pro-1, but lacks the equivalent of Arg-11 and Arg-39 found in 4-OT. Instead, the side chain of Lys-36 replaces that of Arg-11 in a manner similar to that observed in the trimeric macrophage migration inhibitory factor (MIF), which is the title protein of another family in the superfamily. The electrostatic surface of the active site is also quite different and suggests that HpDmpI might prefer small, monoacid substrates. A kinetic analysis of the enzyme is consistent with the structural analysis, but a biological role for the enzyme remains elusive. The crystal structure of DmpI from Archaeoglobus fulgidus (AfDmpI), a 4-OT homolog in subfamily-4, has been determined to 2.4Å resolution. AfDmpI is also a homohexamer, with a proposed active site cavity that includes Pro-1, but lacks any other residues that are readily identified as catalytic ones related to 4-OT activity. Indeed, the electrostatic potential of the active site differs significantly in that it is mostly neutral, in contrast to the usual electropositive features found in other 4-OT family members, suggesting that AfDmpI might accommodate hydrophobic substrates. A kinetic analysis has been carried out, but does not provide any clues about the type of reaction the enzyme might catalyze.


Assuntos
Archaeoglobus fulgidus/enzimologia , Helicobacter pylori/enzimologia , Isomerases/química , Archaeoglobus fulgidus/química , Domínio Catalítico , Cristalografia por Raios X , Helicobacter pylori/química , Isomerases/metabolismo , Cinética , Modelos Moleculares , Multimerização Proteica
11.
Biochemistry ; 46(42): 11919-29, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17902707

RESUMO

YwhB, a 4-oxalocrotonate tautomerase (4-OT) homologue in Bacillus subtilis, has no known biological role, and the gene has no apparent genomic context. The kinetic and stereochemical properties of YwhB have been examined using available enol and dienol compounds. The kinetic analysis shows that YwhB has a relatively nonspecific 1,3- and 1,5-keto-enol tautomerase activity, with the former activity prevailing. Replacement of Pro-1 or Arg-11 with an alanine significantly reduces or abolishes these activities, implicating both residues as critical ones for the activities. In D2O, ketonization of two monoacid substrates (2-hydroxy-2,4-pentadienoate and phenylenolpyruvate) produces a mixture of stereoisomers {2-keto-3-[2H]-4-pentenoate and 3-[2H]-phenylpyruvate}, where the (3R)-isomers predominate. Ketonization of 2-hydroxy-2,4-hexadienedioate, a diacid, in D2O affords mostly the opposite enantiomer, (3S)-2-oxo-[3-2H]-4-hexenedioate. The mono- and diacids apparently bind in different orientations in the active site of YwhB, but the highly stereoselective nature of the YwhB reaction using a diacid suggests that the biological substrate for YwhB may be a diacid. Moreover, of the three dienols examined, 1,3- and 1,5-keto-enol tautomerization reactions are only observed for 2-hydroxy-2,4-hexadienedioate, indicating that the C-3 and C-5 positions are accessible for protonation in this compound. Incubation of 4-OT with 2-hydroxy-2,4-hexadienedioate in D2O results in a racemic mixture of 2-oxo-[3-2H]-4-hexenedioate, suggesting that 4-OT may not catalyze a 1,3-keto-enol tautomerization reaction using this dienol. It has previously been shown that 4-OT catalyzes the near stereospecific conversion of 2-hydroxy-2,4-hexadienedioate to (5S)-[5-2H]-2-oxo-3-hexenedioate in D2O. Taken together, these observations suggest that 4-OT might function as a 1,5-keto-enol tautomerase using 2-hydroxy-2,4-hexadienedioate.


Assuntos
Alcanos/química , Alcinos/química , Bacillus subtilis/enzimologia , Isomerases/metabolismo , Alanina/metabolismo , Alcanos/farmacologia , Alcinos/farmacologia , Substituição de Aminoácidos , Sítios de Ligação , Soluções Tampão , Catálise , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Isomerases/genética , Cinética , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatos/química , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Especificidade por Substrato , Temperatura
12.
Bioorg Chem ; 34(4): 183-99, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16780921

RESUMO

Macrophage migration inhibitory factor (MIF) is an important immunoregulatory protein that has been implicated in several inflammatory diseases. MIF also has a phenylpyruvate tautomerase (PPT) activity, the role of which remains elusive in these biological activities. The acetylene compound, 2-oxo-4-phenyl-3-butynoate (2-OPB), has been synthesized and tested as a potential irreversible inhibitor of its enzymatic activity. Incubation of the compound with MIF results in the rapid and irreversible loss of the PPT activity. Mass spectral analysis established that the amino-terminal proline, previously implicated as a catalytic base in the PPT-catalyzed reaction, is the site of covalent modification. Inactivation of the PPT activity likely occurs by a Michael addition of Pro-1 to C-4 of the inhibitor. Attempts to crystallize the inactivated complex to confirm the structure of the adduct on the covalently modified Pro-1 by X-ray crystallography were not successful. Nor was it possible to unambiguously interpret electron density observed in the active sites of the native crystals soaked with the inhibitor. This may be due to crystal packing in that the side chain of Glu-16 from an adjacent trimer occupies one active site. However, this crystal contact may be partially responsible for the high-resolution quality of these MIF crystals. Nonetheless, because MIF is a member of the tautomerase superfamily, a group of structurally homologous proteins that share a beta-alpha-beta structural motif and a catalytic Pro-1, 2-OPB may find general use as a probe of tautomerase superfamily members that function as PPTs.


Assuntos
Alcinos/farmacologia , Butiratos/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/farmacologia , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Biochemistry ; 43(32): 10490-501, 2004 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-15301547

RESUMO

A series of 2-fluoro-4-alkene and 2-fluoro-4-alkyne substrate analogues were synthesized and examined as potential inhibitors of three enzymes: 4-oxalocrotonate tautomerase (4-OT) and vinylpyruvate hydratase (VPH) from the catechol meta-fission pathway and a closely related 4-OT homologue found in Bacillus subtilis designated YwhB. All of the compounds were potent competitive inhibitors of 4-OT with the monocarboxylated 2E-fluoro-2,4-pentadienoate and the dicarboxylated 2E-fluoro-2-en-4-ynoate being the most potent. Despite the close mechanistic and structural similarities between 4-OT and YwhB, these compounds were significantly less potent inhibitors of YwhB with K(i) values ranging from 5- to 633-fold lower than those determined for 4-OT. The study of VPH is complicated by the fact that the enzyme is only active as a complex with the metal-dependent 4-oxalocrotonate decarboxylase (4-OD), the enzyme following 4-OT in the catechol meta-fission pathway. A structure-based sequence analysis identified 4-OD as a member of the fumarylacetoacetate hydrolase (FAH) superfamily and implicated Glu-109 and Glu-111 as potential metal-binding ligands. Changing these residues to a glutamine verified their importance for enzymatic activity and enabled the production of soluble E109Q4-OD/VPH or E111Q4-OD/VPH complexes, which retained full hydratase activity but had little decarboxylase activity. Subsequent incubation of the E109Q4-OD/VPH complex with the substrate analogues identified the 2E and 2Z isomers of the monocarboxylated 2-fluoropent-2-en-4-ynoate as competitive inhibitors. The combined results set the stage for crystallographic studies of 4-OT, YwhB, and VPH using these inhibitors as ligands.


Assuntos
Alcanos/química , Alcinos/química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Isomerases/antagonistas & inibidores , Proteínas de Ligação às Penicilinas , Proteínas Periplásmicas/antagonistas & inibidores , Alcanos/farmacologia , Alcinos/farmacologia , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Estudos de Avaliação como Assunto , Flúor/química , Flúor/farmacologia , Hidroliases/metabolismo , Isomerases/metabolismo , Ligantes , Dados de Sequência Molecular , Proteínas Periplásmicas/metabolismo , Homologia de Sequência de Aminoácidos
14.
Biochemistry ; 43(3): 748-58, 2004 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-14730980

RESUMO

4-Oxalocrotonate tautomerase (4-OT) and YwhB, a 4-OT homologue found in Bacillus subtilis, exhibit a low level hydratase activity that converts trans-3-haloacrylates to acetaldehyde, presumably through a malonate semialdehyde intermediate. The mechanism for the initial transformation of the 3-haloacrylate to malonate semialdehyde involves Pro-1 as well as an arginine, two residues that play critical roles in the 4-OT-catalyzed isomerization reaction and the YwhB-catalyzed tautomerization reaction. These residues are also critical for the trans-3-chloroacrylic acid dehalogenase (CaaD)-catalyzed conversion of trans-3-haloacrylates to malonate semialdehyde. Recently, 3-bromo- and 3-chloropropiolate, the acetylene analogues of 3-haloacrylates, were characterized as potent irreversible inhibitors of CaaD due to the covalent modification of the catalytic proline. In view of these observations, an investigation of the behavior of 4-OT and YwhB with the 3-halopropiolates was undertaken. The results show that these compounds are potent irreversible inhibitors of 4-OT and YwhB with Pro-1 being the sole site of covalent modification by 3-bromopropiolate. The inactivation process could involve the enzyme-catalyzed addition of water to the 3-halopropiolate yielding an acyl halide, which would inactivate the enzyme or be initiated by the nucleophilic attack of Pro-1 at the C-3 position of the 3-halopropiolate in a Michael type reaction. The presence of the halogen along with Arg-11 could facilitate both reactions with the latter causing the polarization of the alpha,beta-unsaturated acids. The 3-halopropiolates are the first identified inhibitors of YwhB and confirm the importance of Pro-1 in its mechanism. In addition, the results set the stage for the use of these compounds as mechanistic probes of the primary as well as low level activities of 4-OT and YwhB.


Assuntos
Alcinos/química , Bacillus subtilis/enzimologia , Inibidores Enzimáticos/química , Isomerases/química , Proteínas de Ligação às Penicilinas , Propionatos/química , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Substituição de Aminoácidos/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrolases/antagonistas & inibidores , Hidrolases/química , Isomerases/antagonistas & inibidores , Isomerases/genética , Cinética , Peso Molecular , Proteínas Periplásmicas/biossíntese , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Prolina/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Structure ; 11(6): 627-36, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12791252

RESUMO

MAP KAP kinase 2 (MK2), a Ser/Thr kinase, plays a crucial role in the inflammatory process. We have determined the crystal structures of a catalytically active C-terminal deletion form of human MK2, residues 41-364, in complex with staurosporine at 2.7 A and with ADP at 3.2 A, revealing overall structural similarity with other Ser/Thr kinases. Kinetic analysis reveals that the K(m) for ATP is very similar for MK2 41-364 and p38-activated MK2 41-400. Conversely, the catalytic rate and binding for peptide substrate are dramatically reduced in MK2 41-364. However, phosphorylation of MK2 41-364 by p38 restores the V(max) and K(m) for peptide substrate to values comparable to those seen in p38-activated MK2 41-400, suggesting a mechanism for regulation of enzyme activity.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Estaurosporina/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Proteínas Quinases p38 Ativadas por Mitógeno
16.
Biochemistry ; 41(40): 12010-24, 2002 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-12356301

RESUMO

The tautomerase superfamily consists of three major families represented by 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), and macrophage migration inhibitory factor (MIF). The members of this superfamily are structurally homologous proteins constructed from a simple beta-alpha-beta fold that share a key mechanistic feature; they use an amino-terminal proline, which has an unusually low pK(a), as the general base in a keto-enol tautomerization. Several new members of the 4-OT family have now been identified using PSI-BLAST and categorized into five subfamilies on the basis of multiple-sequence alignments and the conservation of key catalytic and structural residues. The members of subfamily 5, which includes a hypothetical protein designated YdcE from Escherichia coli, are predicted not to form hexamers. The crystal structure of YdcE has been determined to 1.35 A resolution and confirms that it is a dimer. In addition, YdcE complexed with (E)-2-fluoro-p-hydroxycinnamate, identified as a potent competitive inhibitor of this enzyme, as well as N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) and benzoate are also presented. These latter crystal structures reveal the location of the active site and suggest a mechanism for the observed YdcE-catalyzed tautomerization reaction. The dimeric arrangement of YdcE represents a new structure in the 4-OT family and demonstrates structural diversity within the 4-OT family not previously reported.


Assuntos
Escherichia coli/enzimologia , Isomerases/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Isomerases/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Pseudomonas putida/química , Alinhamento de Sequência , Análise de Sequência de Proteína
17.
J Biol Chem ; 277(5): 3698-707, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11704676

RESUMO

The nadD gene, encoding the enzyme nicotinic acid mononucleotide (NaMN) adenylyltransferase (AT), is essential for the synthesis of NAD and subsequent viability of the cell. The nadD gene in Bacillus subtilis (yqeJ) was identified by sequence homology with other bacterial nadD genes and by biochemical characterization of the gene product. NaMN AT catalyzes the reversible adenylation of both NaMN and the nicotinamide mononucleotide (NMN) but shows specificity for the nicotinate. In contrast to other known NMN ATs, biophysical characterizations reveal it to be a dimer. The NaMN AT crystal structure was determined for both the apo enzyme and product-bound form, to 2.1 and 3.2 A, respectively. The structures reveal a "functional" dimer conserved in both crystal forms and a monomer fold common to members of the nucleotidyl-transferase alpha/beta phosphodiesterase superfamily. A structural comparison with family members suggests a new conserved motif (SXXXX(R/K)) at the N terminus of an alpha-helix, which is not part of the shared fold. Interactions of the nicotinic acid with backbone atoms indicate the structural basis for specificity.


Assuntos
Bacillus subtilis/enzimologia , Nicotinamida-Nucleotídeo Adenililtransferase , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Fator Xa/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Nucleotidiltransferases/isolamento & purificação , Fragmentos de Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA