Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 64(11): 2187-2198, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36040241

RESUMO

One of the most promising tools for the control of fungal plant diseases is spray-induced gene silencing (SIGS). In SIGS, small interfering RNA (siRNA) or double-stranded RNA (dsRNA) targeting essential or virulence-related pathogen genes are exogenously applied to plants and postharvest products to trigger RNA interference (RNAi) of the targeted genes, inhibiting fungal growth and disease. However, SIGS is limited by the unstable nature of RNA under environmental conditions. The use of layered double hydroxide or clay particles as carriers to deliver biologically active dsRNA, a formulation termed BioClay™, can enhance RNA durability on plants, prolonging its activity against pathogens. Here, we demonstrate that dsRNA delivered as BioClay can prolong protection against Botrytis cinerea, a major plant fungal pathogen, on tomato leaves and fruit and on mature chickpea plants. BioClay increased the protection window from 1 to 3 weeks on tomato leaves and from 5 to 10 days on tomato fruits, when compared with naked dsRNA. In flowering chickpea plants, BioClay provided prolonged protection for up to 4 weeks, covering the critical period of poding, whereas naked dsRNA provided limited protection. This research represents a major step forward for the adoption of SIGS as an eco-friendly alternative to traditional fungicides.


Assuntos
Proteção de Cultivos , Solanum lycopersicum , Interferência de RNA , Botrytis , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Solanum lycopersicum/genética , Plantas/genética
2.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801529

RESUMO

During the infection of a host, plant pathogenic fungi secrete small proteins called effectors, which then modulate the defence response of the host. In the Fusarium oxysporum species complex (FOSC), the secreted in xylem (SIX) gene effectors are important for host-specific pathogenicity, and are also useful markers for identifying the various host-specific lineages. While the presence and diversity of the SIX genes has been explored in many of the pathogenic lineages of F. oxysporum, there is a limited understanding of these genes in non-pathogenic, endophytic isolates of F. oxysporum. In this study, universal primers for each of the known SIX genes are designed and used to screen a panel of endophytically-associated Fusarium species isolated from healthy, asymptomatic banana tissue. SIX gene orthologues are identified in the majority of the Fusarium isolates screened in this study. Furthermore, the SIX gene profiles of these endophytic isolates do not overlap with the SIX genes present in the pathogenic lineages of F. oxysporum that are assessed in this study. SIX gene orthologues have not been commonly identified in Fusarium species outside of the FOSC nor in non-pathogenic isolates of F. oxysporum. The results of this study indicate that the SIX gene effectors may be more broadly distributed throughout the Fusarium genus than previously thought. This has important implications for understanding the evolution of pathogenicity in the FOSC.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Especificidade de Hospedeiro , Musa/microbiologia , Doenças das Plantas/microbiologia , Transcriptoma , Proteínas Fúngicas/genética , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Filogenia , Virulência/genética
3.
Front Plant Sci ; 10: 547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214206

RESUMO

Fusarium wilt is currently spreading in banana growing regions around the world leading to substantial losses. The disease is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), which is further classified into distinct races according to the banana varieties that they infect. Cavendish banana is resistant to Foc race 1, to which the popular Gros Michel subgroup succumbed last century. Cavendish effectively saved the banana industry, and became the most cultivated commercial subgroup worldwide. However, Foc tropical race 4 (TR4) subsequently emerged in Southeast Asia, causing significant yield losses due to its high level of aggressiveness to cultivars of Cavendish, and other commonly grown cultivars. Preventing further spread is crucially important in the absence of effective control methods or resistant market-acceptable banana cultivars. Implementation of quarantine and containment measures depends on early detection of the pathogen through reliable diagnostics. In this study, we tested the hypothesis that secreted in xylem (SIX) genes, which currently comprise the only known family of effectors in F. oxysporum, contain polymorphisms to allow the design of molecular diagnostic assays that distinguish races and relevant VCGs of Foc. We present specific and reproducible diagnostic assays based on conventional PCR targeting SIX genes, using as templates DNA extracted from pure Foc cultures. Sets of primers specifically amplify regions of: SIX6 in Foc race 1, SIX1 gene in TR4, SIX8 in subtropical race 4, SIX9/SIX10 in Foc VCG 0121, and SIX13 in Foc VCG 0122. These assays include simplex and duplex PCRs, with additional restriction digestion steps applied to amplification products of genes SIX1 and SIX13. Assay validations were conducted to a high international standard including the use of 250 Fusarium spp. isolates representing 16 distinct Fusarium species, 59 isolates of F. oxysporum, and 21 different vegetative compatibility groups (VCGs). Tested parameters included inter and intraspecific analytical specificity, sensitivity, robustness, repeatability, and reproducibility. The resulting suite of assays is able to reliably and accurately detect R1, STR4, and TR4 as well as two VCGs (0121 and 0122) causing Fusarium wilt in bananas.

4.
Mol Plant Pathol ; 19(5): 1155-1171, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28802020

RESUMO

It is hypothesized that the virulence of phytopathogenic fungi is mediated through the secretion of small effector proteins that interfere with the defence responses of the host plant. In Fusarium oxysporum, one family of effectors, the Secreted In Xylem (SIX) genes, has been identified. We sought to characterize the diversity and evolution of the SIX genes in the banana-infecting lineages of F. oxysporum f. sp. cubense (Foc). Whole-genome sequencing data were generated for the 23 genetic lineages of Foc, which were subsequently queried for the 14 known SIX genes (SIX1-SIX14). The sequences of the identified SIX genes were confirmed in a larger collection of Foc isolates. Genealogies were generated for each of the SIX genes identified in Foc to further investigate the evolution of the SIX genes in Foc. Within Foc, variation of the SIX gene profile, including the presence of specific SIX homologues, correlated with the pathogenic race structure of Foc. Furthermore, the topologies of the SIX gene trees were discordant with the topology of an infraspecies phylogeny inferred from EF-1α/RPB1/RPB2 (translation elongation factor-1α/RNA polymerase II subunit I/RNA polymerase II subunit II). A series of topological constraint models provided strong evidence for the horizontal transmission of SIX genes in Foc. The horizontal inheritance of pathogenicity genes in Foc counters previous assumptions that convergent evolution has driven the polyphyletic phylogeny of Foc. This work has significant implications for the management of Foc, including the improvement of diagnostics and breeding programmes.


Assuntos
Fusarium/genética , Transferência Genética Horizontal , Genes Fúngicos , Variação Genética , Musa/microbiologia , Sequência de Bases , Evolução Molecular , Genes Essenciais , Padrões de Herança/genética , Funções Verossimilhança , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA