Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2(6): 691-702, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29581108

RESUMO

Vitamin K reduction is catalyzed by 2 enzymes in vitro: the vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) and its isozyme VKORC1-like1 (VKORC1L1). In vivo, VKORC1 reduces vitamin K to sustain γ-carboxylation of vitamin K-dependent proteins, including coagulation factors. Inhibition of VKORC1 by oral anticoagulants (OACs) is clinically used in therapy and in prevention of thrombosis. However, OACs also inhibit VKORC1L1, which was previously shown to play a role in intracellular redox homeostasis in vitro. Here, we report data for the first time on specific inhibition of both VKOR enzymes for various OACs and rodenticides examined in a cell-based assay. Effects on endogenous VKORC1 and VKORC1L1 were independently investigated in genetically engineered HEK 293T cells that were knocked out for the respective genes by CRISPR/Cas9 technology. In general, dose-responses for 4-hydroxycoumarins and 1,3-indandiones were enzyme-dependent, with lower susceptibility for VKORC1L1 compared with VKORC1. In contrast, rodenticides exhibited nearly identical dose-responses for both enzymes. To explain the distinct inhibition pattern, we performed in silico modeling suggesting different warfarin binding sites for VKORC1 and VKORC1L1. We identified arginine residues at positions 38, 42, and 68 in the endoplasmatic reticulum luminal loop of VKORC1L1 responsible for charge-stabilized warfarin binding, resulting in a binding pocket that is diametrically opposite to that of VKORC1. In conclusion, our findings provide insight into structural and molecular drug binding on VKORC1, and especially on VKORC1L1.


Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Sítios de Ligação , Vitamina K Epóxido Redutases/antagonistas & inibidores , Vitamina K Epóxido Redutases/química , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacologia , Sequência de Bases , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Rodenticidas/química , Rodenticidas/farmacologia , Vitamina K Epóxido Redutases/genética , Varfarina/química , Varfarina/farmacologia
2.
Ann Hematol ; 97(6): 1061-1069, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29450643

RESUMO

One of the most common and unwanted side effects during oral anticoagulant therapy (OAT) is bleeding complications. In rare cases, vitamin K antagonist (VKA)-related bleeding events are associated with mutations affecting the F9 propeptide at amino acid position 37 due to a substitution of alanine to either valine or threonine. Based on our actual cohort of 18 patients, we update the knowledge on this rare phenotype and its origin. A founder mutation for both variants was reconfirmed by haplotype analysis of intronic and extragenic short tandem repeat (STR) polymorphisms with a higher prevalence in Switzerland than in other regions of Europe. Screening of healthy individuals for the presence of these F9 gene mutations did not identify any of these variants, thus proving the rare occurrence of this genotype. Furthermore, both variants were expressed in vitro and warfarin dose responses were studied. Our warfarin dose response analysis confirmed higher sensitivity of both variants to warfarin with the effect being more apparent for Ala37Thr. Thus, although F9 propeptide mutation-associated hypersensitivity to VKA is a rare phenomenon, awareness towards this bleeding phenotype is important to identify patients at risk.


Assuntos
Anticoagulantes/farmacologia , Fator IX/genética , Mutação , Polimorfismo Genético , Vitamina K/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Anticoagulantes/efeitos adversos , Estudos de Coortes , Fator IX/análise , Fator IX/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/metabolismo , Suíça , Sequências de Repetição em Tandem , Varfarina/efeitos adversos , Varfarina/farmacologia
3.
Nat Struct Mol Biol ; 24(1): 77-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941861

RESUMO

Vitamin K epoxide reductase (VKOR) catalyzes the reduction of vitamin K quinone and vitamin K 2,3-epoxide, a process essential to sustain γ-carboxylation of vitamin K-dependent proteins. VKOR is also a therapeutic target of warfarin, a treatment for thrombotic disorders. However, the structural and functional basis of vitamin K reduction and the antagonism of warfarin inhibition remain elusive. Here, we identified putative binding sites of both K vitamers and warfarin on human VKOR. The predicted warfarin-binding site was verified by shifted dose-response curves of specified mutated residues. We used CRISPR-Cas9-engineered HEK 293T cells to assess the vitamin K quinone and vitamin K 2,3-epoxide reductase activities of VKOR variants to characterize the vitamin K naphthoquinone head- and isoprenoid side chain-binding regions. Our results challenge the prevailing concept of noncompetitive warfarin inhibition because K vitamers and warfarin share binding sites on VKOR that include Phe55, a key residue binding either the substrate or inhibitor.


Assuntos
Vitamina K Epóxido Redutases/química , Varfarina/química , Biocatálise , Domínio Catalítico , Resistência a Medicamentos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Oxirredução , Fenilalanina/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Vitamina K 1/análogos & derivados , Vitamina K 1/química , Vitamina K 2/química , Vitamina K Epóxido Redutases/antagonistas & inibidores
4.
Nutrients ; 7(8): 6837-51, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26287237

RESUMO

Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2) arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2.


Assuntos
Fenótipo , Vitamina K Epóxido Redutases/genética , Vitamina K/química , 4-Hidroxicumarinas/farmacologia , Sequência de Aminoácidos , Linhagem Celular , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Variação Genética , Homozigoto , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Synechococcus/enzimologia , Tromboembolia/tratamento farmacológico , Vitamina K/antagonistas & inibidores , Vitamina K Epóxido Redutases/química , Varfarina/farmacologia
5.
Thromb Res ; 135(5): 977-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25747820

RESUMO

VKORC1 and VKORC1L1 are enzymes that both catalyze the reduction of vitamin K2,3-epoxide via vitamin K quinone to vitamin K hydroquinone. VKORC1 is the key enzyme of the classical vitamin K cycle by which vitamin K-dependent (VKD) proteins are γ-carboxylated by the hepatic γ-glutamyl carboxylase (GGCX). In contrast, the VKORC1 paralog enzyme, VKORC1L1, is chiefly responsible for antioxidative function by reduction of vitamin K to prevent damage by intracellular reactive oxygen species. To investigate tissue-specific vitamin K 2,3-epoxide reductase (VKOR) function of both enzymes, we quantified mRNA levels for VKORC1, VKORC1L1, GGCX, and NQO1 and measured VKOR enzymatic activities in 29 different mouse tissues. VKORC1 and GGCX are highly expressed in liver, lung and exocrine tissues including mammary gland, salivary gland and prostate suggesting important extrahepatic roles for the vitamin K cycle. Interestingly, VKORC1L1 showed highest transcription levels in brain. Due to the absence of detectable NQO1 transcription in liver, we assume this enzyme has no bypass function with respect to activation of VKD coagulation proteins. Our data strongly suggest diverse functions for the vitamin K cycle in extrahepatic biological pathways.


Assuntos
Proteínas de Membrana/metabolismo , Vitamina K Epóxido Redutases/metabolismo , Animais , Encéfalo/metabolismo , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Glândulas Exócrinas/metabolismo , Feminino , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Microssomos/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/genética
6.
Blood ; 124(8): 1354-62, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24963046

RESUMO

Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) is an enzyme localized to the endoplasmic reticulum (ER) membrane. VKORC1 catalyzes the reduction of vitamin K 2,3-epoxide to vitamin K and to vitamin K hydroquinone, the latter required by the enzyme γ-carboxylase for γ-carboxylation of all vitamin K-dependent (VKD) proteins. Until now, only 1 human VKORC1 mutation, p.Arg98Trp, is known to cause combined deficiency of VKD clotting factors type 2 (VKCFD2), a disease phenotype reported in 3 unrelated families. VKCFD2 patients suffer from spontaneous bleeding episodes because of decreased levels of γ-carboxylated VKD clotting factors. Daily supraphysiological vitamin K supplementation restores clotting for VKCFD2 patients and results in high serum levels of vitamin K 2,3-epoxide, suggesting that supplemented vitamin K is reduced in vivo. Although the p.Arg98Trp mutation results in reduced vitamin K 2,3-epoxide reductase activity, the molecular mechanism underlying this pathophysiology is unknown. Using a combination of in silico analysis and confocal microscopy, we demonstrate for the first time that VKORC1:p.Arg98Trp disrupts a di-arginine ER retention motif resulting in 20% ER colocalization only. As a consequence, VKORC1 exits the ER membrane by cellular quality control systems and results in the observed VKCFD2 phenotype.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Retículo Endoplasmático/enzimologia , Mutação de Sentido Incorreto , Vitamina K Epóxido Redutases/metabolismo , Vitamina K/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Fatores de Coagulação Sanguínea/genética , Linhagem Celular , Retículo Endoplasmático/genética , Humanos , Transporte Proteico/fisiologia , Vitamina K/genética , Vitamina K Epóxido Redutases/genética
7.
Blood ; 122(15): 2743-50, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23982176

RESUMO

Since the discovery of warfarin-sensitive vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), 26 human VKORC1 (hVKORC1) missense mutations have been associated with oral anticoagulant resistance (OACR). Assessment of warfarin resistance using the "classical" dithiothreitol-driven vitamin K 2,3-epoxide reductase (VKOR) assay has not reflected clinical resistance phenotypes for most mutations. Here, we present half maximal inhibitory concentrations (IC50) results for 21 further hVKORC1 mutations obtained using a recently validated cell-based assay (J Thromb Haemost 11(5):872). In contrast to results from the dithiothreitol-driven VKOR assay, all mutations exhibited basal VKOR activity and warfarin IC50 values that correspond well to patient OACR phenotypes. Thus, the present assay is useful for functional investigations of VKORC1 and oral anticoagulant inhibition of the vitamin K cycle. Additionally, we modeled hVKORC1 on the previously solved structure of a homologous bacterial enzyme and performed in silico docking of warfarin on this model. We identified one binding site delineated by 3 putative binding interfaces. These interfaces comprise linear sequences of the endoplasmic reticulum-lumenal loop (Ser52-Phe55) and the first (Leu22-Lys30) and fourth (Phe131-Thr137) transmembrane helices. All known OACR-associated hVKORC1 mutations are located in or around these putative interfaces, supporting our model.


Assuntos
4-Hidroxicumarinas/farmacologia , Resistência a Medicamentos/genética , Modelos Químicos , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia , Anticoagulantes/farmacologia , Sítios de Ligação/genética , Células HEK293 , Humanos , Concentração Inibidora 50 , Mutação de Sentido Incorreto , Ligação Proteica/genética , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA