Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 778103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917091

RESUMO

The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.


Assuntos
Aminopeptidases/metabolismo , Antígeno HLA-B51/metabolismo , Células Matadoras Naturais/enzimologia , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/enzimologia , Receptores KIR3DL1/metabolismo , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/genética , Antineoplásicos/farmacologia , Degranulação Celular , Linhagem Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Inibidores Enzimáticos/farmacologia , Antígeno HLA-B51/genética , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Antígenos de Histocompatibilidade Menor/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Receptores KIR3DL1/genética , Transdução de Sinais
2.
Mol Immunol ; 113: 11-15, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29625843

RESUMO

Cytotoxic T lymphocytes constantly monitor peptide-MHC class I complexes on the cell surface to eliminate transformed and virally infected cells expressing peptides derived from abnormal proteins. The generation of antigenic peptides and their loading on MHC class I molecules is a multistep process involving different molecules that constitute the so-called antigen processing and presentation machinery (APM). To avoid immune-mediated elimination, human tumors and pathogens have adopted different strategies including loss of MHC class I expression and dysregulation of APM genes and proteins. Here, we summarize recent knowledge on genetic variations in APM genes and their association with cancer development and viral-mediated diseases.


Assuntos
Apresentação de Antígeno/imunologia , Genes MHC Classe I/imunologia , Variação Genética/imunologia , Neoplasias/imunologia , Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Viroses/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos
3.
Cell Rep ; 20(4): 846-853, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746870

RESUMO

Herein, we demonstrate that HCMV miR-UL112-5p targets ERAP1, thereby inhibiting the processing and presentation of the HCMV pp65495-503 peptide to specific CTLs. In addition, we show that the rs17481334 G variant, naturally occurring in the ERAP1 3' UTR, preserves ERAP1 from miR-UL112-5p-mediated degradation. Specifically, HCMV miR-UL112-5p binds the 3' UTR of ERAP1 A variant, but not the 3' UTR of ERAP1 G variant, and, accordingly, ERAP1 expression is reduced both at RNA and protein levels only in human fibroblasts homozygous for the A variant. Consistently, HCMV-infected GG fibroblasts were more efficient in trimming viral antigens and being lysed by HCMV-peptide-specific CTLs. Notably, a significantly decreased HCMV seropositivity was detected among GG individuals suffering from multiple sclerosis, a disease model in which HCMV is negatively associated with adult-onset disorder. Overall, our results identify a resistance mechanism to HCMV miR-UL112-5p-based immune evasion strategy with potential implications for individual susceptibility to infection and other diseases.


Assuntos
Aminopeptidases/metabolismo , Citomegalovirus/genética , Variação Genética/genética , MicroRNAs/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Regiões 3' não Traduzidas/genética , Aminopeptidases/genética , Linfócitos T CD8-Positivos/metabolismo , Infecções por Citomegalovirus/enzimologia , Infecções por Citomegalovirus/genética , Genótipo , Humanos , MicroRNAs/genética , Antígenos de Histocompatibilidade Menor/genética , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Viral/genética , Linfócitos T Citotóxicos/metabolismo
4.
Clin Cancer Res ; 23(15): 4462-4472, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270499

RESUMO

Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules.Experimental Design:In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation.Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients (P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma.Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15); 4462-72. ©2017 AACR.


Assuntos
Antígeno B7-H1/genética , Genes MHC Classe I/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/imunologia , Azepinas/administração & dosagem , Antígeno B7-H1/imunologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes MHC Classe I/imunologia , Humanos , Lactente , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Proteína Proto-Oncogênica N-Myc/imunologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Neuroblastoma/patologia , Prognóstico , Receptor de Morte Celular Programada 1/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Triazóis/administração & dosagem , Proteína do Gene 3 de Ativação de Linfócitos
5.
PLoS One ; 12(2): e0171517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187209

RESUMO

Since 2007, one-step nucleic acid amplification (OSNA) has been used as a diagnostic system for sentinel lymph node (SLN) examination in patients with breast cancer. This study aimed to define a new clinical cut-off of CK19 mRNA copy number based on the calculation of the risk that an axillary lymph node dissection (ALND) will be positive. We analyzed 1529 SLNs from 1140 patients with the OSNA assay and 318 patients with positive SLNs for micrometastasis (250 copies) and macrometastasis (5000 copies) underwent ALND. Axillary non-SLNs were routinely examined. ROC curves and Youden's index were performed in order to identify a new cut-off value. Logistic regression models were performed in order to compare OSNA categorical variables created on the basis of our and traditional cut-off to better identify patients who really need an axillary dissection. 69% and 31% of OSNA positive patients had a negative and positive ALND, respectively. ROC analysis identified a cut-off of 2150 CK19 mRNA copies with 95% sensitivity and 51% specificity. Positive and negative predictive values of this new cut-off were 47% and 96%, respectively. Logistic regression models indicated that the cut-off of 2150 copies better discriminates patients with node negative or positive in comparison with the conventional OSNA cut-off (p<0.0001). This cut-off identifies false positive and false negative cases and true-positive and true negative cases very efficiently, and therefore better identifies which patients really need an ALND and which patients can avoid one. This is why we suggest that the negative cut-off should be raised from 250 to 2150. Furthermore, we propose that for patients with a copy number that ranges between 2150 and 5000, there should be a multidisciplinary discussion concerning the clinical and bio-morphological features of primary breast cancer before any decision is taken on whether to perform an ALND or not.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Queratina-19/genética , RNA Mensageiro/genética , Linfonodo Sentinela/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/normas , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Queratina-19/metabolismo , Queratina-19/normas , Metástase Linfática , Técnicas de Diagnóstico Molecular/normas , Valor Preditivo dos Testes , RNA Mensageiro/metabolismo , RNA Mensageiro/normas
6.
Oncoimmunology ; 4(9): e1019981, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26405592

RESUMO

Neuroblastoma grows within an intricate network of different cell types including epithelial, stromal and immune cells. The presence of tumor-infiltrating T cells is considered an important prognostic indicator in many cancers, but the role of these cells in neuroblastoma remains to be elucidated. Herein, we examined the relationship between the type, density and organization of infiltrating T cells and clinical outcome within a large collection of neuroblastoma samples by quantitative analysis of immunohistochemical staining. We found that infiltrating T cells have a prognostic value greater than, and independent of, the criteria currently used to stage neuroblastoma. A variable in situ structural organization and different concurrent infiltration of T-cell subsets were detected in tumors with various outcomes. Low-risk neuroblastomas were characterized by a higher number of proliferating T cells and a more structured T-cell organization, which was gradually lost in tumors with poor prognosis. We defined an immunoscore based on the presence of CD3+, CD4+ and CD8+ infiltrating T cells that associates with favorable clinical outcome in MYCN-amplified tumors, improving patient survival when combined with the v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) status. These findings support the hypothesis that infiltrating T cells influence the behavior of neuroblastoma and might be of clinical importance for the treatment of patients.

7.
J Thorac Oncol ; 7(4): 672-80, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22425916

RESUMO

INTRODUCTION: The optimal use of epidermal growth factor receptor (EGFR)-related molecular markers to prospectively identify tyrosine kinase inhibitor (TKI)-sensitive patients, particularly after a previous chemotherapy treatment, is currently under debate. METHODS: We designed a prospective phase II study to evaluate the activity of EGFR-TKI in four different patient groups, according to the combination of molecular (EGFR gene mutations, EGFR gene copy number and protein expression, and phosphorylated AKT expression, pAKT) and clinicopathological (histology and smoking habits) factors. Correlations between molecular alterations and clinical outcome were also explored retrospectively for first-line chemotherapy and EGFR-TKI treatment. RESULTS: Patients who had progressed during or after first-line chemotherapy were prospectively assigned to EGFR-TKI treatment as follows: (G1) EGFR mutation (n = 12); (G2) highly polysomic/amplified EGFR (n = 18); (G3) EGFR and/or pAKT positive (n = 41); (G4) adenocarcinoma/bronchoalveolar carcinoma and no smoking history (n = 15). G1 and G4 had the best and second-best overall response rate (25% and 20%, respectively), whereas the worst outcome was observed in G2 (ORR, 6%; p = 0.05). Disease control was highest in G1 and G4 (>50%) and lowest in G3 (<20%) (p = 0.02). Patients selected by EGFR mutation or clinical parameters (G1 and G4) also had significantly better progression-free survival and overall survival (p = 0.02 and p = 0.01, respectively). Multivariate analysis confirmed the impact of sex, smoking history, EGFR/KRAS mutation, and pAKT on outcomes and allowed us to derive an efficient predictive model. Histology, EGFR mutations, and pAKT were independent predictors of response to first-line chemotherapy at retrospective analysis, whereas pAKT and human epidermal growth factor receptor 2 expression were the only independent predictors of progression-free survival and overall survival. CONCLUSIONS: Selection of patients based on either EGFR mutation or clinical characteristics seems an effective approach to optimize EGFR-TKI treatment in chemotherapy-pretreated non-small-cell lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Intervalo Livre de Doença , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Masculino , Análise Multivariada , Estudos Prospectivos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA