Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396982

RESUMO

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Sumoilação , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citomegalovirus , Mutação , Sumoilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos
2.
Open Biol ; 13(2): 220220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809799

RESUMO

CK2 is a Ser/Thr protein kinase composed of two catalytic (α/α') subunits and a non-catalytic ß-subunit dimer, whose activity is often abnormally high in cancer cells. The concept that CK2 may be dispensable for cell survival has been challenged by the finding that viable CK2α/α' knock-out myoblast clones still express small amounts of an N-terminally deleted α' subunit generated during the CRISPR/Cas9 procedure. Here we show that, although the overall CK2 activity of these CK2α(-/-)/Δα' (KO) cells is less than 10% compared to wild-type (WT) cells, the number of phosphosites with the CK2 consensus is comparable to that of WT cells. A more in-depth analysis, however, reveals that the two phosphoproteomes are not superimposable according to a number of criteria, notably a functional analysis of the phosphoproteome found in the two types of cells, and variable sensitivity of the phosphosites to two structurally unrelated CK2 inhibitors. These data support the idea that a minimal CK2 activity, as in KO cells, is sufficient to perform basic housekeeping functions essential for cell survival, but not to accomplish several specialized tasks required upon cell differentiation and transformation. From this standpoint, a controlled downregulation of CK2 would represent a safe and valuable anti-cancer strategy.


Assuntos
Caseína Quinase II , Mioblastos , Caseína Quinase II/metabolismo , Linhagem Celular , Mioblastos/metabolismo
3.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077010

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene encoding of the cystic fibrosis transmembrane conductance regulator (CFTR), an anion-selective plasma membrane channel that mainly regulates chloride transport in a variety of epithelia. More than 2000 mutations, most of which presumed to be disease-relevant, have been identified in the CFTR gene. The single CFTR mutation F508del (deletion of phenylalanine in position 508) is present in about 90% of global CF patients in at least one allele. F508del is responsible for the defective folding and processing of CFTR, failing to traffic to the plasma membrane and undergoing premature degradation via the ubiquitin-proteasome system. CFTR is subjected to different post-translational modifications (PTMs), and the possibility to modulate these PTMs has been suggested as a potential therapeutic strategy for the functional recovery of the disease-associated mutants. Recently, the PTM mapping of CFTR has identified some lysine residues that may undergo methylation or ubiquitination, suggesting a competition between these two PTMs. Our work hypothesis moves from the idea that favors methylation over ubiquitination, e.g., inhibiting demethylation could be a successful strategy for preventing the premature degradation of unstable CFTR mutants. Here, by using a siRNA library against all the human demethylases, we identified the enzymes whose downregulation increases F508del-CFTR stability and channel function. Our results show that KDM2A and KDM3B downregulation increases the stability of F508del-CFTR and boosts the functional rescue of the channel induced by CFTR correctors.


Assuntos
Fibrose Cística , Proteínas F-Box , Membrana Celular/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas F-Box/genética , Humanos , Transporte de Íons , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mutação
4.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292885

RESUMO

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Assuntos
Aminofenóis/administração & dosagem , Benzodioxóis/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Pirrolidinas/administração & dosagem , Quinolonas/administração & dosagem , Sulfetos/administração & dosagem , Sulfonamidas/administração & dosagem , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Deleção de Sequência
5.
Chem Commun (Camb) ; 58(30): 4791-4794, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35343996

RESUMO

In this work, an iterative cycle of enzymatic assays, X-ray crystallography, molecular modelling and cellular assays were used to develop a functionalisable chemical probe for the CK2α/ß PPI. The lead peptide, P8C9, successfully binds to CK2α at the PPI site, is easily synthesisable and functionalisable, highly stable in serum and small enough to accommodate further optimisation.


Assuntos
Caseína Quinase II , Peptídeos Cíclicos , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Peptídeos , Peptídeos Cíclicos/farmacologia
6.
Bioorg Med Chem ; 59: 116670, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202967

RESUMO

Norbormide [5-(α-hydroxy-α-2-pyridylbenzyl)-7-(α-2-pyridylbenzylidene)-5-norbornene-2,3-dicarboximide] (NRB, 1), an existing but infrequently used rodenticide, is known to be uniquely toxic to rats, but relatively harmless to other rodents and mammals. As a vasoactive agent, NRB induces a species-specific vasocontractile effect that is restricted to the peripheral arteries of the rat. Despite the precise mechanisms behind this phenomenon having yet to be fully clarified, it is postulated that the molecular target of NRB could be located within the plasma membrane of rat peripheral artery myocytes (e.g. rat caudal artery myocytes). As such, the primary objective of this study was to develop a fluorescently labelled derivative of NRB to investigate its subcellular distribution/localization in both NRB-sensitive (freshly isolated rat caudal artery myocytes, FIRCAMs) and NRB-insensitive (human hepatic stellate, LX2) cells. Of the examples prepared, lead structure endo-NRB-NBD-bPA subsequently demonstrated retention of the parent toxicant's pharmacological profile (in terms of its ability to induce both a vasocontractile response in rat caudal artery rings in vitro, and a lethal end-point in rats in vivo). Endo-NRB-NBD-bPA was also shown to be significantly less permeable (an integral feature in the design of fluorescent probes targeting cell-surface receptors) to both LX2 cells and FIRCAMs. Disappointingly, no fluorescence could be observed on the plasma membrane of FIRCAMs stained with endo-NRB-NBD-bPA.


Assuntos
Corantes Fluorescentes , Norbornanos , Animais , Corantes Fluorescentes/metabolismo , Fígado/metabolismo , Mamíferos , Norbornanos/química , Norbornanos/metabolismo , Norbornanos/farmacologia , Ratos
7.
Signal Transduct Target Ther ; 6(1): 183, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33994545

RESUMO

CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Doenças Cardiovasculares , Caseína Quinase II , Fibrose Cística , Oftalmopatias , Transtornos Mentais , Inibidores de Proteínas Quinases/uso terapêutico , SARS-CoV-2 , COVID-19/enzimologia , COVID-19/genética , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/enzimologia , Fibrose Cística/genética , Oftalmopatias/tratamento farmacológico , Oftalmopatias/enzimologia , Oftalmopatias/genética , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/enzimologia , Transtornos Mentais/genética , Mutação , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
Crit Rev Biochem Mol Biol ; 56(4): 321-359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33843388

RESUMO

CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.


Assuntos
Caseína Quinase II/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Transdução de Sinais , Viroses/enzimologia , Animais , Humanos , Inflamação/enzimologia
9.
J Cyst Fibros ; 20(5): 891-894, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33814322

RESUMO

Deletion of Phe at position 508 (F508del) in CFTR is the commonest cause of Cystic Fibrosis; this mutation affects the fate of the protein, since most of the F508del-CFTR is retained in the endoplasmic reticulum, ubiquitylated and degraded. CFTR is subjected to different post-translational modifications (PTMs) and the possibility to modulate these PTMs has been suggested as a potential therapeutic strategy for the functional recovery of F508del-CFTR. Recently, it has been suggested the presence of a PTM signature (phosphorylation, methylation and ubiquitylation) in the regulatory insertion element of the CFTR, named PTM-code, which is associated with CFTR maturation and F508del-CFTR recovery. However, the real contribution of these PTMs is still to be deciphered. Here, by using a mutational approach, we show that the PTM-code is dispensable for the functional recovery of F508del-CFTR and therefore its regulation would not be essential in the light of a therapeutical approach.


Assuntos
Fibrose Cística/genética , Mutação , Processamento de Proteína Pós-Traducional , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística , Retículo Endoplasmático , Humanos , Fosforilação
10.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668127

RESUMO

The making of a protein is based on the combination of 20 different monomers (22 considering selenocysteine and pyrrolysine, the latest present only in some archaea and bacteria) giving the possibility of building a variety of structures from the simplest to the most complex, rigid or highly dynamic, and suited to carry out a wide range of structural and functional roles [...].


Assuntos
Doença , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Animais , Humanos , Transdução de Sinais
11.
Eur J Med Chem ; 214: 113217, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548633

RESUMO

CK2 (an acronym derived from the misnomer "casein kinase 2") denotes a ubiquitous, highly pleiotropic protein kinase which has been implicated in global human pathologies, with special reference to cancer. A large spectrum of fairly selective, cell permeable CK2 inhibitors are available, one of which, CX4945 is already in clinical trials for the treatment of neoplasia. Another recently developed CK2 inhibitor, GO289, displays in vitro potency and selectivity comparable to CX4945. Here the cellular efficiency of these two inhibitors has been evaluated by treating C2C12 myoblasts for 5 h with each of them at 4 µM concentration and running a quantitative phosphoproteomics analysis of phosphosites affected by the two compounds. A small but significant proportion of the quantified phosphosites is decreased by treatment with CX4945 and, even more with GO289. This figure substantially increases if a subset of quantified phosphosites conforming to the CK2 consensus (pS/pT-x-x-D/E/pS/pT) is considered. Also in this case GO289 is more effective than CX4945. By adopting stringent criteria two shortlists of 70 and 35 sites whose phosphorylation is decreased >50% by GO289 and CX4945, respectively, have been generated. All these phosphosites conform to the consensus of CK2 with just sporadic exceptions. Their WebLogos are indistinguishable from that of bona fide CK2 phosphosites and their Two-Sample Logos rule out any significant contribution of Pro-directed and basophilic protein kinases to their generation. To sum up, we can conclude that by treating C2C12 cells for 5 h with either CX4945 or GO289 off-target effects are negligible since almost all the phosphosites undergoing a substantial reduction are attributable to CK2, with a higher inhibitory efficacy displayed by GO289. CX4945 and GO289 provide highly selective tools to control the CK2-dependent phosphoproteome compared with previously developed CK2 inhibitors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Naftiridinas/farmacologia , Fenazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Animais , Caseína Quinase II/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Naftiridinas/química , Fenazinas/química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
12.
Cell Oncol (Dordr) ; 43(6): 1003-1016, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33052585

RESUMO

BACKGROUND: Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective. CONCLUSIONS: In this review, we will address combined anti-cancer therapeutic strategies described so far which involve the use of CX-4945. Data from preclinical studies clearly show the ability of CX-4945 to synergistically cooperate with different classes of anti-neoplastic agents, thereby contributing to an orchestrated anti-tumour action against multiple targets. Overall, these promising outcomes support the translation of CX-4945 combined therapies into clinical anti-cancer applications.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Caseína Quinase II/antagonistas & inibidores , Naftiridinas/uso terapêutico , Fenazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Humanos , Naftiridinas/química , Naftiridinas/farmacologia , Fenazinas/química , Fenazinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
13.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118807, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745724

RESUMO

Methuosis has been described as a distinctive form of cell death characterized by the displacement of large fluid-filled vacuoles derived from uncontrolled macropinocytosis. Its induction has been proposed as a new strategy against cancer cells. Small molecules, such as indole-based calchones, have been identified as methuosis inducers and, recently, the CK2 inhibitor CX-4945 has been shown to have a similar effect on different cell types. However, the contribution of protein kinase CK2 to methuosis signalling is still controversial. Here we show that methuosis is not related to CK2 activity since it is not affected by structurally unrelated CK2 inhibitors and genetic reduction/ablation of CK2 subunits. Interestingly, CX-5011, a CK2 inhibitor related to CX-4945, behaves as a CK2-independent methuosis inducer, four times more powerful than its parental compound and capable to promote the formation on enlarged cytosolic vacuoles at low micromolar concentrations. We show that pharmacological inhibition of the small GTPase Rac-1, its downregulation by siRNA treatment, or the over-expression of the dominant-negative mutated form of Rac-1 (Rac-1 T17N), impairs CX-5011 ability to induce methuosis. Furthermore, cell treatment with CX-5011 induces a durable activation of Rac-1 that persists for at least 24 h. Worthy of note, CX-5011 is able to promote macropinocytosis not only in mammalian cells, but also in an in-vivo zebrafish model. Based on these evidences, CX-5011 is, therefore, proposed as a potential promising compound for cancer therapies for its dual efficacy as an inhibitor of the pro-survival kinase CK2 and inducer of methuosis.


Assuntos
Caseína Quinase II/genética , Morte Celular/genética , Neoplasias/tratamento farmacológico , Proteínas rac1 de Ligação ao GTP/genética , Sistemas CRISPR-Cas/genética , Caseína Quinase II/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Edição de Genes , Células Hep G2 , Humanos , Indóis/farmacologia , Pinocitose/efeitos dos fármacos , Pinocitose/genética , Pirimidinas/farmacologia , Quinolinas/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
14.
Biochem Biophys Res Commun ; 531(3): 409-415, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32800562

RESUMO

Viable clones of C2C12 myoblasts where both catalytic subunits of protein kinase CK2 had been knocked out by the CRISPR/Cas9 methodology have recently been generated, thus challenging the concept that CK2 is essential for cell viability. Here we present evidence that these cells are still endowed with a residual "CK2-like" activity that is able to phosphorylate Ser-13 of endogenous CDC37. Searching for a molecular entity accounting for such an activity we have identified a band running slightly ahead of CK2α' on SDS-PAGE. This band is not detectable by in-gel casein kinase assay but it co-immuno-precipitates with the ß-subunit being downregulated by specific CK2α' targeting siRNA treatment. Its size and biochemical properties are consistent with those of CK2α' mutants deleted upstream of Glu-15 generated during the knockout process. This mutant sheds light on the role of the CK2 N-terminal segment as a regulator of activity and stability. Comparable cytotoxic efficacy of two selective and structurally unrelated CK2 inhibitors support the view that survival of CK2α/α'-/- cells relies on this deleted form of CK2α', whose discovery provides novel perspectives about the biological role of CK2.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Deleção de Sequência , Sequência de Aminoácidos , Animais , Caseína Quinase II/deficiência , Linhagem Celular , Sobrevivência Celular , Camundongos Knockout , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Estabilidade Proteica , Especificidade por Substrato
15.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165611, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740403

RESUMO

F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2α' catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches.


Assuntos
Caseína Quinase II/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Linhagem Celular , Fibrose Cística/metabolismo , Humanos , Subunidades Proteicas/metabolismo
16.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779225

RESUMO

Protein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α') and two regulatory (ß) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity. Interestingly, CK2 mutations have been recently linked to neurodevelopmental disorders; however, the functional requirements of the individual CK2 subunits in neurodevelopment have not been yet investigated. Here, we disclose the role of CK2 on the migration and adhesion properties of GN11 cells, an established model of mouse immortalized neurons, by different in vitro experimental approaches. Specifically, the cellular requirement of this kinase has been assessed pharmacologically and genetically by exploiting CK2 inhibitors and by generating subunit-specific CK2 knockout GN11 cells (with a CRISPR/Cas9-based approach). We show that CK2α' subunit has a primary role in increasing cell adhesion and reducing migration properties of GN11 cells by activating the Akt-GSK3ß axis, whereas CK2α subunit is dispensable. Further, the knockout of the CK2ß regulatory subunits counteracts cell migration, inducing dramatic alterations in the cytoskeleton not observed in CK2α' knockout cells. Collectively taken, our data support the view that the individual subunits of CK2 play different roles in cell migration and adhesion properties of GN11 cells, supporting independent roles of the different subunits in these processes.


Assuntos
Caseína Quinase II/genética , Neurônios/citologia , Animais , Caseína Quinase II/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Mutação , Neurônios/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
17.
Brain Behav Immun ; 81: 138-150, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175999

RESUMO

Immune system alterations have been implicated in various dopamine-related disorders, such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder (ADHD). How immunity might be influenced by dopaminergic dysfunction and impact on clinically-relevant behaviors is still uncertain. We performed a peripheral and cerebral immunophenotyping in mice bearing dopaminergic alteration produced by genetic liability (hypofunction of the dopamine transporter DAT) and psychostimulant (amphetamine) administration. We found that DAT hypofunction influences immune tolerance by increasing functional Tregs and adrenomedullin levels in the thymus and spleen, while reducing microglia activation and infiltration of brain monocyte-derived macrophages (mo-MΦ). Remarkably, both DAT hypofunction and amphetamine treatment are associated with a weaker activation of the choroid plexus (CP) gateway. Conversely, amphetamine reactivated the CP in the setting of DAT hypofunction, paralleling its paradoxical ADHD-relevant behavioral effects. These findings add new knowledge on dopaminergic immunopharmacology and support the immunomodulation of CP functionality as a promising therapeutic strategy for neurodevelopmental and psychiatric disorders.


Assuntos
Plexo Corióideo/metabolismo , Imunomodulação/efeitos dos fármacos , Imunomodulação/fisiologia , Anfetamina/farmacologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Estimulantes do Sistema Nervoso Central/farmacologia , Plexo Corióideo/efeitos dos fármacos , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esquizofrenia
18.
PLoS One ; 14(4): e0211169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958824

RESUMO

In this study we investigated the performance of two norbormide (NRB)-derived fluorescent probes, NRBMC009 (green) and NRBZLW0047 (red), on dissected, living larvae of Drosophila, to verify their potential application in live cell imaging confocal microscopy. To this end, larval tissues were exposed to NRB probes alone or in combination with other commercial dyes or GFP-tagged protein markers. Both probes were rapidly internalized by most tissues (except the central nervous system) allowing each organ in the microscope field to be readily distinguished at low magnification. At the cellular level, the probes showed a very similar distribution (except for fat bodies), defined by loss of signal in the nucleus and plasma membrane, and a preferential localization to endoplasmic reticulum (ER) and mitochondria. They also recognized ER and mitochondrial phenotypes in the skeletal muscles of fruit fly models that had loss of function mutations in the atlastin and mitofusin genes, suggesting NRBMC009 and NRBZLW0047 as potentially useful screening tools for characterizing ER and mitochondria morphological alterations. Feeding of larvae and adult Drosophilae with the NRB-derived dyes led to staining of the gut and its epithelial cells, revealing a potential role in food intake assays. In addition, when flies were exposed to either dye over their entire life cycle no apparent functional or morphological abnormalities were detected. Rapid internalization, a bright signal, a compatibility with other available fluorescent probes and GFP-tagged protein markers, and a lack of toxicity make NRBZLW0047 and, particularly, NRBMC009 highly performing fluorescent probes for live cell microscopy studies and food intake assays in Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Corantes Fluorescentes/administração & dosagem , Microscopia Intravital/métodos , Norbornanos/administração & dosagem , Animais , Drosophila melanogaster/anatomia & histologia , Ingestão de Alimentos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Absorção Gastrointestinal , Trato Gastrointestinal/diagnóstico por imagem , Proteínas de Fluorescência Verde/química , Larva/fisiologia , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Modelos Animais , Norbornanos/química , Norbornanos/toxicidade , Testes de Toxicidade Crônica
19.
Curr Protein Pept Sci ; 20(6): 547-562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30659536

RESUMO

Substrate pleiotropicity, a very acidic phosphorylation consensus sequence, and an apparent uncontrolled activity, are the main features of CK2, a Ser/Thr protein kinase that is required for a plethora of cell functions. Not surprisingly, CK2 appears to affect cytoskeletal structures and correlated functions such as cell shape, mechanical integrity, cell movement and division. This review outlines our current knowledge of how CK2 regulates cytoskeletal structures, and discusses involved pathways and molecular mechanisms.


Assuntos
Caseína Quinase II/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Caseína Quinase II/química , Divisão Celular , Movimento Celular , Forma Celular , Humanos , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Septinas/metabolismo , Transdução de Sinais , Tubulina (Proteína)/metabolismo
20.
Front Pharmacol ; 9: 1055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319407

RESUMO

Background: Norbormide (NRB) is a selective rat toxicant endowed with vasoconstrictor activity confined to the rat peripheral arteries. In a recent work we used a fluorescent derivative of NRB (NRB-AF12), obtained by coupling the NBD fluorophore to the parent molecule via a linker, in order to gain information about the possible site of action of the unlabeled compound. We found that NRB-AF12 labeled intracellular organelles in both NRB-sensitive and -insensitive cells and we accordingly proposed its use as a scaffold for the development of a new class of fluorescent probes. In this study, we examined the fluorescent properties of a BODIPY FL-conjugated NRB probe (MC009) developed: (A) to verify if NRB distribution could be influenced by the attached fluorophore; (B) to improve the fluorescent performance of NRB-AF12. Methods: MC009 characteristics were investigated by confocal fluorescence microscopy, in freshly isolated rat caudal artery myocytes (FIRCAM) and in LX2 cells, representative of NRB-sensitive and insensitive cells, respectively. Main results: In both FIRCAM and LX2 cells MC009 stained endoplasmic reticulum, mitochondria, Golgi apparatus and lipid droplets, revealing the same intracellular distribution as NRB-AF12, and, at the same time, had both improved photostability and gave a more intense fluorescent signal at lower concentrations than was possible with NRB-AF12, which resulted in a better and finer visualization of intracellular structures. Furthermore, MC009 was effective in cellular labeling in both living and fixed cells. At the concentration used to stain the cells, MC009 did not show any cytotoxic effect and did not affect the regular progression of cell cycle and division. Conclusions: This study demonstrates that the distribution of fluorescently labeled NRB is not affected by the type of fluorophore attached to the parent compound, supporting the idea that the localization of the fluorescent derivatives may reasonably reflect that of the parent compound. In addition, we observed a marked improvement in the fluorescent properties of BODIPY FL-conjugated NRB (MC009) over its NBD-derived counterpart (NRB-AF12), confirming NRB as a scaffold for the development of new, high performance, non-toxic fluorescent probes for the labeling of intracellular structures in both living and fixed cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA