Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Blood ; 144(1): 84-98, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579286

RESUMO

ABSTRACT: The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo, and reduces levels of reactive oxygen species (ROS), accompanied by a decreased response to ROS-associated genotoxic agents (eg, ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype on serial transplantation in mice. Our single-cell cellular indexing of transcriptomes and epitopes by sequencing analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification, such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in patients with AML. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.


Assuntos
Proteínas de Ciclo Celular , Ferroptose , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Humanos , Ferroptose/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas GADD45
2.
Blood ; 143(18): 1873-1877, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457663

RESUMO

ABSTRACT: High prevalence of IDH mutations in seronegative rheumatoid arthritis (RA) with myeloid neoplasm, elevated 2-hydroxyglutarate, dysregulated innate immunity, and proinflammatory microenvironment suggests causative association between IDH mutations and seronegative RA. Our findings merit investigation of IDH inhibitors as therapeutics for seronegative IDH-mutated RA.


Assuntos
Artrite Reumatoide , Imunidade Inata , Isocitrato Desidrogenase , Mutação , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética , Isocitrato Desidrogenase/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
3.
Cancer Cell ; 41(7): 1309-1326.e10, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295428

RESUMO

The first step of oncogenesis is the acquisition of a repertoire of genetic mutations to initiate and sustain the malignancy. An important example of this initiation phase in acute leukemias is the formation of a potent oncogene by chromosomal translocations between the mixed lineage leukemia (MLL) gene and one of 100 translocation partners, known as the MLL recombinome. Here, we show that circular RNAs (circRNAs)-a family of covalently closed, alternatively spliced RNA molecules-are enriched within the MLL recombinome and can bind DNA, forming circRNA:DNA hybrids (circR loops) at their cognate loci. These circR loops promote transcriptional pausing, proteasome inhibition, chromatin re-organization, and DNA breakage. Importantly, overexpressing circRNAs in mouse leukemia xenograft models results in co-localization of genomic loci, de novo generation of clinically relevant chromosomal translocations mimicking the MLL recombinome, and hastening of disease onset. Our findings provide fundamental insight into the acquisition of chromosomal translocations by endogenous RNA carcinogens in leukemia.


Assuntos
Leucemia , Translocação Genética , Animais , Camundongos , Humanos , RNA Circular/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/genética , Leucemia/patologia , DNA , Proteínas de Fusão Oncogênica/genética
4.
Cancer Discov ; 13(8): 1922-1947, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37191437

RESUMO

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.


Assuntos
Leucemia Mieloide Aguda , Receptores de Citocinas , Humanos , Receptores de Citocinas/uso terapêutico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação , Transdução de Sinais , Proliferação de Células , Células-Tronco Neoplásicas
5.
Pathology ; 55(1): 77-85, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36031433

RESUMO

The identification of a somatic mutation associated with myeloid malignancy is of diagnostic importance in myeloproliferative neoplasms (MPNs). Individuals with no mutation detected in common screening tests for variants in JAK2, CALR, and MPL are described as 'triple-negative' and pose a diagnostic challenge if there is no other evidence of a clonal disorder. To identify potential drivers that might explain the clinical phenotype, we used an extended sequencing panel to characterise a cohort of 44 previously diagnosed triple-negative MPN patients for canonical mutations in JAK2, MPL and CALR at low variant allele frequency (found in 4/44 patients), less common variants in the JAK-STAT signalling pathway (12 patients), or other variants in recurrently mutated genes from myeloid malignancies (18 patients), including hotspot variants of potential clinical relevance in eight patients. In one patient with thrombocytosis we identified biallelic germline MPL variants. Neither MPL variant was activating in cell proliferation assays, and one of the variants was not expressed on the cell surface, yet co-expression of both variants led to thrombopoietin hypersensitivity. Our results highlight the clinical value of extended sequencing including germline variant analysis and illustrate the need for detailed functional assays to determine whether rare variants in JAK2 or MPL are pathogenic.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Receptores de Trombopoetina/genética , Calreticulina/genética , Calreticulina/metabolismo , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Mutação
7.
Nat Commun ; 13(1): 2614, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551192

RESUMO

The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Adulto , Mutação em Linhagem Germinativa , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
9.
Oncogene ; 40(29): 4746-4758, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958723

RESUMO

Transcription factor MYB has recently emerged as a promising drug target for the treatment of acute myeloid leukemia (AML). Here, we have characterized a group of natural sesquiterpene lactones (STLs), previously shown to suppress MYB activity, for their potential to decrease AML cell proliferation. Unlike what was initially thought, these compounds inhibit MYB indirectly via its cooperation partner C/EBPß. C/EBPß-inhibitory STLs affect the expression of a large number of MYB-regulated genes, suggesting that the cooperation of MYB and C/EBPß broadly shapes the transcriptional program of AML cells. We show that expression of GFI1, a direct MYB target gene, is controlled cooperatively by MYB, C/EBPß, and co-activator p300, and is down-regulated by C/EBPß-inhibitory STLs, exemplifying that they target the activity of composite MYB-C/EBPß-p300 transcriptional modules. Ectopic expression of GFI1, a zinc-finger protein that is required for the maintenance of hematopoietic stem and progenitor cells, partially abrogated STL-induced myelomonocytic differentiation, implicating GFI1 as a relevant target of C/EBPß-inhibitory STLs. Overall, our data identify C/EBPß as a pro-leukemogenic factor in AML and suggest that targeting of C/EBPß may have therapeutic potential against AML.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Leucemia Mieloide Aguda , Diferenciação Celular
10.
Leukemia ; 35(11): 3245-3256, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33850299

RESUMO

The majority of studies assessing the contribution of pathogenic germline variants (PGVs) to cancer predisposition have focused on patients with single cancers. We analyzed 45 known cancer predisposition genes (CPGs) in germline samples of 202 patients with hematological malignancies (HMs) plus one or more other independent cancer managed at major tertiary medical centers on two different continents. This included 120 patients with therapy-related myeloid neoplasms (t-MNs), where the HM occurred after cytotoxic treatment for a first malignancy, and 82 patients with multiple cancers in which the HM was not preceded by cytotoxic therapy (MC-HM). Using American College of Medical Genetics/Association for Molecular Pathology variant classification guidelines, 13% of patients had PGVs, most frequently identified in CHEK2 (17% of PGVs), BRCA1 (13%), DDX41 (13%), and TP53 (7%). The frequency of PGVs in MC-HM was higher than in t-MN, although not statistically significant (18 vs. 9%; p = 0.085). The frequency of PGVs in lymphoid and myeloid HM patients was similar (19 vs. 17.5%; p > 0.9). Critically, patients with PGVs in BRCA1, BRCA2 or TP53 did not satisfy current clinical phenotypic criteria for germline testing. Our data suggest that a personal history of multiple cancers, one being a HM, should trigger screening for PGVs.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Mutação em Linhagem Germinativa , Neoplasias Hematológicas/patologia , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Predisposição Genética para Doença , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/genética , Prognóstico , Estudos Retrospectivos , Estados Unidos/epidemiologia , Adulto Jovem
11.
Cancer Discov ; 11(6): 1542-1561, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33500244

RESUMO

Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Células-Tronco Neoplásicas/citologia , Indução de Remissão , Animais , Linhagem Celular Tumoral/citologia , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/patologia , Fenótipo
12.
Cancer Cell ; 38(2): 263-278.e6, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32559496

RESUMO

Signals driving aberrant self-renewal in the heterogeneous leukemia stem cell (LSC) pool determine aggressiveness of acute myeloid leukemia (AML). We report that a positive modulator of canonical WNT signaling pathway, RSPO-LGR4, upregulates key self-renewal genes and is essential for LSC self-renewal in a subset of AML. RSPO2/3 serve as stem cell growth factors to block differentiation and promote proliferation of primary AML patient blasts. RSPO receptor, LGR4, is epigenetically upregulated and works through cooperation with HOXA9, a poor prognostic predictor. Blocking the RSPO3-LGR4 interaction by clinical-grade anti-RSPO3 antibody (OMP-131R10/rosmantuzumab) impairs self-renewal and induces differentiation in AML patient-derived xenografts but does not affect normal hematopoietic stem cells, providing a therapeutic opportunity for HOXA9-dependent leukemia.


Assuntos
Leucemia Mieloide/genética , Células-Tronco Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Trombospondinas/genética , Doença Aguda , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Estimativa de Kaplan-Meier , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Trombospondinas/imunologia , Trombospondinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208489

RESUMO

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Epigênese Genética , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Linhagem , Fenótipo
15.
Leukemia ; 33(12): 2842-2853, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31089247

RESUMO

Therapy-related myeloid neoplasms (T-MN) are poorly characterized secondary hematological malignancies following chemotherapy/radiotherapy exposure. We compared the clinical and mutational characteristics of T-MN (n = 129) and primary myelodysplastic syndrome (P-MDS, n = 108) patients. Although the somatic mutation frequency was similar between T-MN and P-MDS patients (93% in both groups), the pattern was distinct. TP53 mutations were more frequent in T-MN (29.5 vs. 7%), while spliceosomal complex mutations were more common in P-MDS (56.5 vs. 25.6%). In contrast to P-MDS, the ring sideroblasts (RS) phenotype was not associated with better survival in T-MN, most probably due to genetic association with TP53 mutations. SF3B1 was mutated in 96% of P-MDS with ≥15% RS, but in only 32% T-MN. TP53 mutations were detected in 92% T-MN with ≥15% RS and SF3B1 wild-type cases. Interestingly, T-MN and P-MDS patients with "Very low" or "Low" Revised International Prognostic Scoring System (IPSS-R) showed similar biological and clinical characteristics. In a Cox regression analysis, TP53 mutation was a poor prognostic factor in T-MN, independent of IPSS-R cytogenetics, disease-modifying therapy, and NRAS mutation. Our data have direct implications for T-MN management and provide evidence that, in addition to conventional disease parameters, mutational analysis should be incorporated in T-MN risk stratification.


Assuntos
Leucemia Mieloide/etiologia , Mutação , Síndromes Mielodisplásicas/genética , Segunda Neoplasia Primária/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores , Biópsia , Aberrações Cromossômicas , Análise Citogenética , Diagnóstico Diferencial , Feminino , Humanos , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/mortalidade , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/mortalidade , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/mortalidade , Prognóstico , Adulto Jovem
16.
Nat Genet ; 51(4): 694-704, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926971

RESUMO

Acute erythroid leukemia (AEL) is a high-risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases with non-AEL myeloid disorders and defined five age-related subgroups with distinct transcriptional profiles: adult, TP53 mutated; NPM1 mutated; KMT2A mutated/rearranged; adult, DDX41 mutated; and pediatric, NUP98 rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 overexpression being associated with a favorable prognosis and TP53, FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases and included recurrent mutations of ALK and NTRK1, the latter of which drives erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia.


Assuntos
Leucemia Eritroblástica Aguda/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genômica/métodos , Proteínas de Homeodomínio/genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Proteína Supressora de Tumor p53/genética , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
19.
Leuk Res ; 57: 57-59, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28301819

RESUMO

miR-155 has emerged as one of the key microRNAs (miRNAs) involved in normal and malignant myelopoiesis, and high expression of this miRNA has been flagged as a strong independent prognostic marker in Acute Myeloid Leukemia (AML). While elevated expression of miR-155 has been associated with FLT3-ITD mutations, other mechanisms which may regulate expression of this miRNA in AML remain largely unknown. Here, we present new evidence that miR-155 may be a prime target of IL-3 signaling in primary AML cells. This finding, together with the increasingly apparent role for miR-155 in oncogenesis, and the upregulation of the IL-3 receptor alpha subunit in AML, lead us to propose this pathway may significantly contribute to the leukemic transformation.


Assuntos
Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Transformação Celular Neoplásica , Regulação Leucêmica da Expressão Gênica , Humanos , Subunidade alfa de Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Células Tumorais Cultivadas , Regulação para Cima
20.
Blood ; 129(6): 771-782, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27956387

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy where despite improvements in conventional chemotherapy and bone marrow transplantation, overall survival remains poor. Sphingosine kinase 1 (SPHK1) generates the bioactive lipid sphingosine 1-phosphate (S1P) and has established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers. The role and targeting of SPHK1 in primary AML, however, has not been previously investigated. Here we show that SPHK1 is overexpressed and constitutively activated in primary AML patient blasts but not in normal mononuclear cells. Subsequent targeting of SPHK1 induced caspase-dependent cell death in AML cell lines, primary AML patient blasts, and isolated AML patient leukemic progenitor/stem cells, with negligible effects on normal bone marrow CD34+ progenitors from healthy donors. Furthermore, administration of SPHK1 inhibitors to orthotopic AML patient-derived xenografts reduced tumor burden and prolonged overall survival without affecting murine hematopoiesis. SPHK1 inhibition was associated with reduced survival signaling from S1P receptor 2, resulting in selective downregulation of the prosurvival protein MCL1. Subsequent analysis showed that the combination of BH3 mimetics with either SPHK1 inhibition or S1P receptor 2 antagonism triggered synergistic AML cell death. These results support the notion that SPHK1 is a bona fide therapeutic target for the treatment of AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Amino Álcoois/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA