Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(2): e4868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100281

RESUMO

Carbonyl-carbonyl interactions in peptides and proteins attracted considerable interest in recent years. Here, we report a survey of carbonyl-carbonyl interactions in cyclic peptides, depsipeptides, peptoids and discuss the relationship between backbone torsion angles and CO∙∙∙CO distances. In general, φ values in the range between -40° and -90° and between 40° and 90° correspond to CO∙∙∙CO distances below 3.22 Å. By extending the analysis of carbonyl-carbonyl interactions in different types of beta turns in proteins, we also highlight the role of direct or reciprocal carbonyl-carbonyl interactions in stabilizing the beta turn conformation for each specific type. We confirmed the new type II beta turn, detected by Dunbrack and coworkers, and named Pa, and detect the presence of a direct carbonyl-carbonyl interaction between the second and third residues of the turn. We also evidenced the existence of another new type II beta turn, named pA (following Dunbrack's notation), which represents the alternative conformation of Pa with opposite φ and ψ values and is characterized by a direct carbonyl-carbonyl interaction between the second and third residues of the turn. Finally, we show that the occurrence of CO∙∙∙CO interactions could be also advocated to explain from a chemical point of view the diversity of turn types.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Proteínas/química , Conformação Proteica , Peptídeos Cíclicos , Ligação de Hidrogênio
2.
Comput Struct Biotechnol J ; 21: 5620-5629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047234

RESUMO

The ability to predict a protein's three-dimensional conformation represents a crucial starting point for investigating evolutionary connections with other members of the corresponding protein family, examining interactions with other proteins, and potentially utilizing this knowledge for the purpose of rational drug design. In this work, we evaluated the feasibility of improving AlphaFold2's three-dimensional protein predictions by developing a novel pipeline (AlphaMod) that incorporates AlphaFold2 with MODELLER, a template-based modeling program. Additionally, our tool can drive a comprehensive quality assessment of the tertiary protein structure by incorporating and comparing a set of different quality assessment tools. The outcomes of selected tools are combined into a composite score (BORDASCORE) that exhibits a meaningful correlation with GDT_TS and facilitates the selection of optimal models in the absence of a reference structure. To validate AlphaMod's results, we conducted evaluations using two distinct datasets summing up to 72 targets, previously used to independently assess AlphaFold2's performance. The generated models underwent evaluation through two methods: i) averaging the GDT_TS scores across all produced structures for a single target sequence, and ii) a pairwise comparison of the best structures generated by AlphaFold2 and AlphaMod. The latter, within the unsupervised setups, shows a rising accuracy of approximately 34% over AlphaFold2. While, when considering the supervised setup, AlphaMod surpasses AlphaFold2 in 18% of the instances. Finally, there is an 11% correspondence in outcomes between the diverse methodologies. Consequently, AlphaMod's best-predicted tertiary structures in several cases exhibited a significant improvement in the accuracy of the predictions with respect to the best models obtained by AlphaFold2. This pipeline paves the way for the integration of additional data and AI-based algorithms to further improve the reliability of the predictions.

3.
Trends Biochem Sci ; 48(7): 590-596, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031054

RESUMO

Investigating large datasets of biological information by automatic procedures may offer chances of progress in knowledge. Recently, tremendous improvements in structural biology have allowed the number of structures in the Protein Data Bank (PDB) archive to increase rapidly, in particular those for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated proteins. However, their automatic analysis can be hampered by the nonuniform descriptors used by authors in some records of the PDB and PDBx/mmCIF files. In this opinion article we highlight the difficulties encountered in automating the analysis of hundreds of structures, suggesting that further standardization of the description of these molecular entities and of their attributes, generalized to the macromolecular structures contained in the PDB, might generate files more suitable for automatized analyses of a large number of structures.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas/química , Estrutura Molecular , Bases de Dados de Proteínas , Conformação Proteica
4.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956778

RESUMO

The SARS-CoV-2 variant Omicron is characterized, among others, by more than 30 amino acid changes occurring on the spike glycoprotein with respect to the original SARS-CoV-2 spike protein. We report a comprehensive analysis of the effects of the Omicron spike amino acid changes in the interaction with human antibodies, obtained by modeling them into selected publicly available resolved 3D structures of spike-antibody complexes and investigating the effects of these mutations at structural level. We predict that the interactions of Omicron spike with human antibodies can be either negatively or positively affected by amino acid changes, with a predicted total loss of interactions only in a few complexes. Moreover, our analysis applied also to the spike-ACE2 interaction predicts that these amino acid changes may increase Omicron transmissibility. Our approach can be used to better understand SARS-CoV-2 transmissibility, detectability, and epidemiology and represents a model to be adopted also in the case of other variants.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos/genética , Enzima de Conversão de Angiotensina 2 , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus
5.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595532

RESUMO

Pharmacological chaperones are chemical compounds able to bind proteins and stabilize them against denaturation and following degradation. Some pharmacological chaperones have been approved, or are under investigation, for the treatment of rare inborn errors of metabolism, caused by genetic mutations that often can destabilize the structure of the wild-type proteins expressed by that gene. Given that, for rare diseases, there is a general lack of pharmacological treatments, many expectations are poured out on this type of compounds. However, their discovery is not straightforward. In this review, we would like to focus on the computational methods that can assist and accelerate the search for these compounds, showing also examples in which these methods were successfully applied for the discovery of promising molecules belonging to this new category of pharmacologically active compounds.


Assuntos
Chaperonas Moleculares , Doenças Raras , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Mutação , Doenças Raras/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA