Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127619, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898251

RESUMO

Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).


Assuntos
Biomimética , Gelatina , Gelatina/química , Sinais (Psicologia) , Osteogênese , Hidrogéis/química , Engenharia Tecidual/métodos
2.
Macromol Biosci ; 24(4): e2300395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997022

RESUMO

Bone regeneration remains a clinical challenge given the transplantation incidence rate and the associated economic burden. Bottom-up osteoid tissue engineering has the potential to offer an alternative approach to current clinical solutions that suffer from various drawbacks. In this paper, deposition-based bioprinting is exploited while the effect is explored of both the crosslinking mechanism (gelatin methacryloyl (GelMA) versus gelatin norbornene (DS 91) crosslinked with thiolated gelatin (GelNBSH)) and the degree of substitution (GelNBSH versus norbornene-norbornene-modified gelatin (DS 169) crosslinked with thiolated gelatin (GelNBNBSH)) on the presented biophysical cues as well as on the osteogenic differentiation. The incorporation of tris(2-carboxyethyl)phosphine (TCEP) to the step-growth inks allows the production of reproducible and biocompatible scaffolds based on thiol-ene chemistry. Dental pulp stem cell encapsulation in GelNBNBSH biofabricated constructs shows a favorable response due to the combination of its stress relaxation and substrate rigidity (bulk compressive modulus of 11-30 kPa) as reflected by a sevenfold increase in calcium production compared to the tissue engineering standard GelMA. This work is the first to exploit a controlled biocompatible and cell-interactive thiolated macromolecular crosslinker (GelSH + TCEP) allowing the extrusion-based biofabrication of low concentration (5 w/v%) modified osteogenic gelatin-based inks (GelNBNBSH + TCEP).


Assuntos
Bioimpressão , Fosfinas , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Osteogênese , Gelatina/química , Engenharia Tecidual , Hidrogéis/química , Norbornanos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA