Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27432, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495198

RESUMO

Positioning and navigation are essential components of neuroimaging as they improve the quality and reliability of data acquisition, leading to advances in diagnosis, treatment outcomes, and fundamental understanding of the brain. Functional ultrasound imaging is an emerging technology providing high-resolution images of the brain vasculature, allowing for the monitoring of brain activity. However, as the technology is relatively new, there is no standardized tool for inferring the position in the brain from the vascular images. In this study, we present a deep learning-based framework designed to address this challenge. Our approach uses an image classification task coupled with a regression on the resulting probabilities to determine the position of a single image. To evaluate its performance, we conducted experiments using a dataset of 51 rat brain scans. The training positions were extracted at intervals of 375 µm, resulting in a positioning error of 176 µm. Further GradCAM analysis revealed that the predictions were primarily driven by subcortical vascular structures. Finally, we assessed the robustness of our method in a cortical stroke where the brain vasculature is severely impaired. Remarkably, no specific increase in the number of misclassifications was observed, confirming the method's reliability in challenging conditions. Overall, our framework provides accurate and flexible positioning, not relying on a pre-registered reference but rather on conserved vascular patterns.

2.
PLOS Digit Health ; 2(11): e0000384, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992021

RESUMO

We present the Patient Trajectory Analysis Library (PTRA), a software package for explorative analysis of patient development. PTRA provides the tools for extracting statistically relevant trajectories from the medical event histories of a patient population. These trajectories can additionally be clustered for visual inspection and identifying key events in patient progression. The algorithms of PTRA are based on a statistical method developed previously by Jensen et al, but we contribute several modifications and extensions to enable the implementation of a practical tool. This includes a new clustering strategy, filter mechanisms for controlling analysis to specific cohorts and for controlling trajectory output, a parallel implementation that executes on a single server rather than a high-performance computing (HPC) cluster, etc. PTRA is furthermore open source and the code is organized as a framework so researchers can reuse it to analyze new data sets. We illustrate our tool by discussing trajectories extracted from the TriNetX Dataworks database for analyzing bladder cancer development. We show this experiment uncovers medically sound trajectories for bladder cancer.

3.
Commun Med (Lond) ; 2(1): 162, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543940

RESUMO

BACKGROUND: Despite apparent promise and the availability of numerous examples in the literature, machine learning models are rarely used in practice in ICU units. This mismatch suggests that there are poorly understood barriers preventing uptake, which we aim to identify. METHODS: We begin with a qualitative study with 29 interviews of 40 Intensive Care Unit-, hospital- and MedTech company staff members. As a follow-up to the study, we attempt to quantify some of the technical issues raised. To perform experiments we selected two models based on criteria such as medical relevance. Using these models we measure the loss of performance in predictive models due to drift over time, change of available patient features, scarceness of data, and deploying a model in a different context to the one it was built in. RESULTS: The qualitative study confirms our assumptions on the potential of AI-driven analytics for patient care, as well as showing the prevalence and type of technical blocking factors that are responsible for its slow uptake. The experiments confirm that each of these issues can cause important loss of predictive model performance, depending on the model and the issue. CONCLUSIONS: Based on the qualitative study and quantitative experiments we conclude that more research on practical solutions to enable AI-driven innovation in Intensive Care Units is needed. Furthermore, the general poor situation with respect to public, usable implementations of predictive models would appear to limit the possibilities for both the scientific repeatability of the underlying research and the transfer of this research into practice.


It is helpful for clinicians to be able to predict what will happen to a patient in an Intensive Care Unit (ICU); accurate computer-based predictive systems could help to avoid serious illness. However, most ICUs currently make little or no use of them. Here, we try to understand why, so that barriers to their introduction can be overcome. We interview medical experts, who agree that prediction systems should be feasible. They also identify practical technical problems with using them. We investigate these issues by running experiments on example predictive systems where we change what data is used to train the system and what data it is asked to make predictions on. The experiments show that the identified issues cause problems and are worthy of further attention. This work should help to enable the use of computer-based predictive systems in ICUs.

4.
Alzheimers Res Ther ; 13(1): 20, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422142

RESUMO

BACKGROUND: Both serotonergic signalling disruption and systemic inflammation have been associated with the pathogenesis of Alzheimer's disease (AD). The common denominator linking the two is the catabolism of the essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is reported to be activated in times of host systemic inflammation and therefore is thought to influence both pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically diagnosed with AD, mild cognitive impairment (MCI) and age-matched controls. METHODS: Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCI - versus those who remained cognitively stable at follow-up visits (sMCI); and those who underwent further cognitive decline (cMCI); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite concentrations. RESULTS: Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCI > AD. There were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in serum, but not urine. CONCLUSIONS: Urine and serum serotonin concentrations were found to be significantly lower in AD compared with controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve serotonin bioavailability and signalling in AD patients.


Assuntos
Doença de Alzheimer , Cinurenina , Disponibilidade Biológica , Humanos , Cinurenina/metabolismo , Serotonina , Triptofano/metabolismo
5.
Sci Rep ; 10(1): 21745, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303834

RESUMO

Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer's Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer's Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer's Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer's Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer's pathology in previous studies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Fenótipo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/urina , Biomarcadores/urina , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/urina , Feminino , Humanos , Masculino , Metabolômica/métodos , Locos de Características Quantitativas
6.
NPJ Digit Med ; 1: 67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31304344

RESUMO

Physiological signals have shown to be reliable indicators of stress in laboratory studies, yet large-scale ambulatory validation is lacking. We present a large-scale cross-sectional study for ambulatory stress detection, consisting of 1002 subjects, containing subjects' demographics, baseline psychological information, and five consecutive days of free-living physiological and contextual measurements, collected through wearable devices and smartphones. This dataset represents a healthy population, showing associations between wearable physiological signals and self-reported daily-life stress. Using a data-driven approach, we identified digital phenotypes characterized by self-reported poor health indicators and high depression, anxiety and stress scores that are associated with blunted physiological responses to stress. These results emphasize the need for large-scale collections of multi-sensor data, to build personalized stress models for precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA