Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2797: 299-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570469

RESUMO

Prior analysis of intact and modified protein forms (proteoforms) of KRAS4B isolated from cell lines and tumor samples by top-down mass spectrometry revealed the presence of novel posttranslational modifications (PTMs) and potential evidence of context-specific KRAS4B modifications. However, low endogenous proteoform signal resulted in ineffective characterization, making it difficult to visualize less abundant PTMs or perform follow-up PTM validation using standard proteomic workflows. The NCI RAS Initiative has developed a model system, whereby KRAS4B bearing an N-terminal FLAG tag can be stably expressed within a panel of cancer cell lines. Herein, we present a method for combining immunoprecipitation with complementary proteomic methods to directly analyze N-terminally FLAG-tagged KRAS4B proteoforms and PTMs. We provide detailed protocols for FLAG-KRAS4B purification, proteoform analysis by targeted top-down LC-MS/MS, and validation of abundant PTMs by bottom-up LC-MS/MS with example results.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Espectrometria de Massa com Cromatografia Líquida
2.
Anal Chem ; 96(13): 5223-5231, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498381

RESUMO

Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.


Assuntos
Proteômica , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Sítios de Ligação
3.
Anal Chem ; 93(47): 15728-15735, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34788003

RESUMO

Electron transfer dissociation (ETD) is an analytically useful tool for primary structure interrogation of intact proteins, but its utility is limited by higher-order reactions with the products. To inhibit these higher-order reactions, first-generation fragment ions are kinetically excited by applying an experimentally tailored parallel ion parking waveform during ETD (ETD-PIP). In combination with subsequent ion/ion proton transfer reactions, precursor-to-product conversion was maximized as evidenced by the consumption of more than 90% of the 21 kDa Protein G precursor to form ETD product ions. The employment of ETD-PIP increased sequence coverage to 90% from 80% with standard ETD. Additionally, the inhibition of sequential electron transfers was reflected in the high number of complementary ion pairs from ETD-PIP (90%) compared to standard ETD (39%).


Assuntos
Elétrons , Proteínas , Transporte de Elétrons , Íons , Análise de Sequência
4.
J Proteome Res ; 20(9): 4427-4434, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34379411

RESUMO

Previous work employing five SARS-CoV-2 spike protein receptor-binding domain (RBD) constructs, comprising versions originally developed by Mt. Sinai or the Ragon Institute and later optimized in-house, revealed potential heterogeneity which led to questions regarding variable seropositivity assay performance. Each construct was subjected to N-deglycosylation and subsequent intact mass analysis, revealing significant deviations from predicted theoretical mass for all five proteins. Complementary tandem MS/MS analysis revealed the presence of an additional pyroGlu residue on the N-termini of the two Mt. Sinai RBD constructs, as well as on the N-terminus of the full-length spike protein from which they were derived, thus explaining the observed mass shift and definitively establishing the spike protein N-terminal sequence. Moreover, the observed mass additions for the three Ragon Institute RBD constructs were identified as variable N-terminal cleavage points within the signal peptide sequence employed for recombinant expression. To resolve this issue and minimize heterogeneity for further seropositivity assay development, the best-performing RBD construct was further optimized to exhibit complete homogeneity, as determined by both intact mass and tandem MS/MS analysis. This new RBD construct has been validated for seropositivity assay performance, is available to the greater scientific community, and is recommended for use in future assay development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Espectrometria de Massas em Tandem
5.
J Am Soc Mass Spectrom ; 31(9): 1783-1802, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812765

RESUMO

The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Regiões Determinantes de Complementaridade/análise , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Camundongos
6.
Anal Chem ; 92(15): 10470-10477, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32597636

RESUMO

Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor. Low concentration samples resulted in the elimination of large peptide products due to a greater number of enzymatic cleavages. A competitive inhibitor rich in arginine residues reduced the number of enzymatic cleavages to the protein and retained large molecular weight products. The digestion of a bispecific antibody with competitive inhibition of aspergillopepsin I maintained large peptide products better suited for sequence reconstruction, resulting in complete sequence coverage from a single LC-MS/MS analysis.


Assuntos
Anticorpos Biespecíficos/química , Ácido Aspártico Endopeptidases/metabolismo , Enzimas Imobilizadas/metabolismo , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Sequência de Bases , Enzimas Imobilizadas/química
7.
Anal Chem ; 91(21): 13547-13554, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31584792

RESUMO

Accurate sequence characterization is essential for the development of therapeutic antibodies by the pharmaceutical industry. Presented here is a methodology to obtain comprehensive sequence analysis of a monoclonal antibody. An enzyme reactor of immobilized Aspergillopepsin I, a highly stable nonspecific protease, was used to cleave reduced antibody subunits into a peptide profile ranging from 1 to 20 kDa. Utilizing the Thermo Orbitrap Fusion's unique instrument architecture combined with state-of-the-art instrument control software allowed for dynamic instrument methods that optimally characterize eluting peptides based on their size and charge density. Using a data-dependent instrument method, both collisional dissociation and electron transfer dissociation were used to fragment the appropriate charge state of analyte peptides. The instrument layout also allowed for scans to be taken in parallel using both the ion trap and Orbitrap concurrently, thus allowing larger peptides to be analyzed in high resolution using the Orbitrap while simultaneously analyzing tryptic-like peptides using the ion trap. We harnessed these capabilities to develop a custom method to optimally fragment the eluting peptides based on their mass and charge density. Using this approach, we obtained 100% sequence coverage of the total antibody in a single chromatographic analysis, enabling unambiguous sequence assignment of all residues.


Assuntos
Anticorpos Monoclonais/química , Reatores Biológicos , Enzimas Imobilizadas/química , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA