Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(2): 250-257, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352832

RESUMO

We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CLPro). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CLPro ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CLPro forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CLPro in cultured cells. This study paves the way for the future applicability of peptidomimetic PROTACs to tackle 3CLPro-dependent viral infections.

2.
Angew Chem Int Ed Engl ; 62(50): e202310230, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37878393

RESUMO

Post-translational modifications of Tau are emerging as key players in determining the onset and progression of different tauopathies such as Alzheimer's disease, and are recognized to mediate the structural diversity of the disease-specific Tau amyloids. Here we show that the E3 ligase CHIP catalyzes the site-specific ubiquitination of Tau filaments both in vitro and in cellular models, proving that also Tau amyloid aggregates are direct substrate of PTMs. Transmission electron microscopy and mass spectrometry analysis on ubiquitin-modified Tau amyloids revealed that the conformation of the filaments restricts CHIP-mediated ubiquitination to specific positions of the repeat domain, while only minor alterations in the structure of the fibril core were inferred using seeding experiments in vitro and in a cell-based tauopathy model. Overexpression of CHIP significantly increased the ubiquitination of exogenous PHF, proving that the ligase can interact and modify Tau aggregates also in a complex cellular environment.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo , Ubiquitinação
3.
J Agric Food Chem ; 71(30): 11429-11441, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466260

RESUMO

Espresso coffee is among the most consumed beverages in the world. Recent studies report a protective activity of the coffee beverage against neurodegenerative disorders such as Alzheimer's disease. Alzheimer's disease belongs to a group of disorders, called tauopathies, which are characterized by the intraneuronal accumulation of the microtubule-associated protein tau in fibrillar aggregates. In this work, we characterized by NMR the molecular composition of the espresso coffee extract and identified its main components. We then demonstrated with in vitro and in cell experiments that the whole coffee extract, caffeine, and genistein have biological properties in preventing aggregation, condensation, and seeding activity of the repeat region of tau. We also identified a set of coffee compounds capable of binding to preformed tau fibrils. These results add insights into the neuroprotective potential of espresso coffee and suggest candidate molecular scaffolds for designing therapies targeting monomeric or fibrillized forms of tau.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/metabolismo , Tauopatias/prevenção & controle , Tauopatias/metabolismo , Cafeína/farmacologia , Extratos Vegetais
4.
Microb Cell Fact ; 22(1): 126, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443119

RESUMO

BACKGROUND: Biosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon. RESULTS: Rhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954T and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 ± 0.51 and 1.86 ± 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 °C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m- 1 of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids. CONCLUSIONS: The use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity.


Assuntos
Alcanos , Rhodococcus , Tensoativos/química , Tensão Superficial , Biodegradação Ambiental
5.
Chemistry ; 29(46): e202301274, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37293933

RESUMO

Liquid-liquid phase separation (LLPS) of biopolymers to form condensates is a widespread phenomenon in living cells. Agents that target or alter condensation can help uncover elusive physiological and pathological mechanisms. Owing to their unique material properties and modes of interaction with biomolecules, nanoparticles represent attractive condensate-targeting agents. Our work focused on elucidating the interaction between ultrasmall gold nanoparticles (usGNPs) and diverse types of condensates of tau, a representative phase-separating protein associated with neurodegenerative disorders. usGNPs attract considerable interest in the biomedical community due to unique features, including emergent optical properties and good cell penetration. We explored the interaction of usGNPs with reconstituted self-condensates of tau, two-component tau/polyanion and three-component tau/RNA/alpha-synuclein coacervates. The usGNPs were found to concentrate into condensed liquid droplets, consistent with the formation of dynamic client (nanoparticle) - scaffold (tau) interactions, and were observable thanks to their intrinsic luminescence. Furthermore, usGNPs were capable to promote LLPS of a protein domain which is unable to phase separate on its own. Our study demonstrates the ability of usGNPs to interact with and illuminate protein condensates. We anticipate that nanoparticles will have broad applicability as nanotracers to interrogate phase separation, and as nanoactuators controlling the formation and dissolution of condensates.


Assuntos
Condensados Biomoleculares , Nanopartículas Metálicas , Humanos , Ouro , Luminescência , Domínios Proteicos
6.
Bioorg Chem ; 132: 106347, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630781

RESUMO

In Alzheimer's disease and related disorders called tauopathies, the microtubule-associated protein tau accumulates in the brain in the form of amyloid-like supramolecular filaments. As an intrinsically disordered protein, tau undergoes many post-translational modifications, including ubiquitination. Alterations to the levels of ubiquitination of tau have been observed at various stages of neurodegenerative conditions. We focus on proteoform-specific interrogations to obtain mechanistic insight into the effects of ubiquitination on disease-related conformational transitions of tau. Single and double ubiquitination of tau at residues Lys311 and Lys317 is strongly associated with pathological conditions. In this study, we leveraged disulfide-directed chemistry to install ubiquitin at one or both of those positions in the isolated microtubule-binding repeat domain of tau. We obtained homogeneously modified tau proteins and observed that they retained disordered character in solution. We found that ubiquitination in position 317 (with or without ubiquitination in position 311) impaired the formation of ordered fibrillar structures via oligomeric intermediates. Since the transition to fibrillar species may proceed via an alternative condensation pathway involving liquid droplet intermediates, we further tested the ability of the ubiquitinated proteoforms to phase separate. Single monoubiquitinated tau species were able to coacervate, however no liquid droplets were observed for the double ubiquitinated form. Taken together, the data indicate that double ubiquitination in the third repeat of tau disfavors the formation of amyloid aggregates by distinct mechanisms, suggesting that the presence of ubiquitinated residues 311 and 317 in insoluble tau may result from modifications in advanced stages of aggregation. These findings contribute to our understanding of the influence of site-specific ubiquitination on the pathological conformational transitions of a prototypical intrinsically disordered protein.


Assuntos
Doença de Alzheimer , Proteínas Intrinsicamente Desordenadas , Humanos , Proteínas tau/metabolismo , Proteínas Amiloidogênicas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
7.
Nano Lett ; 22(22): 8875-8882, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346924

RESUMO

Understanding the interactions between nanoparticles (NPs) and proteins is crucial for the successful application of NPs in biological contexts. Protein adsorption is dependent on particle size, and protein binding to ultrasmall (1-3 nm) NPs is considered to be generally weak. However, most studies have involved structured biomacromolecules, while the interactions of ultrasmall NPs with intrinsically disordered proteins (IDPs) have remained elusive. IDPs are abundant in eukaryotes and found to associate with NPs intracellularly. As a model system, we focused on ultrasmall gold nanoparticles (usGNPs) and tau, a cytosolic IDP associated with Alzheimer's disease. Using site-resolved NMR, steady-state fluorescence, calorimetry, and circular dichroism, we reveal that tau and usGNPs form stable multimolecular assemblies, representing a new type of nano-bio interaction. Specifically, the observed interaction hot spots explain the influence of usGNPs on tau conformational transitions, with implications for the intracellular targeting of aberrant IDP aggregation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Nanopartículas Metálicas , Ouro/química , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica
8.
Bioconjug Chem ; 33(7): 1261-1268, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35686491

RESUMO

Intrinsically disordered proteins (IDPs) are increasingly found to be associated with irreversible neurodegenerative disorders. The protein tau is a prototypical IDP whose abnormal aggregation into insoluble filaments is a major hallmark of Alzheimer's disease. The view has emerged that aggregation may proceed via alternative pathways involving oligomeric intermediates or phase-separated liquid droplets. Nanoparticles (NPs) offer significant potential for probing the mechanisms of protein fibrillation and may be capable of redirecting conformational transitions. Here, we camouflaged dye-doped silica NPs through functionalization with tau molecules to impart them the ability to associate with protein assemblies such as aggregates or condensates. The prepared NP-tau conjugates showed little influence on the aggregation kinetics and morphology of filamentous aggregates of tau but were found to associate with the filaments. Moreover, NP-tau conjugates were recruited and concentrated into polyanion-induced condensates of tau, driven by multivalent electrostatic interactions, thereby illuminating liquid droplets and their time-dependent transformation, as observed by fluorescence microscopy. NP-tau conjugates were capable of entering human neuroglioma cells and were not cytotoxic. Hence, we propose that NP-tau conjugates could serve as nanotracers for in vitro and in-cell studies to target and visualize tau assemblies and condensates, contributing to an explanation for the molecular mechanisms of abnormal protein aggregation.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas , Humanos , Agregados Proteicos , Conformação Proteica , Dióxido de Silício , Proteínas tau
9.
Cell Mol Life Sci ; 79(2): 127, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133504

RESUMO

Calmodulin (CaM), a ubiquitous and highly conserved Ca2+-sensor protein involved in the regulation of over 300 molecular targets, has been recently associated with severe forms of lethal arrhythmia. Here, we investigated how arrhythmia-associated mutations in CaM localized at the C-terminal lobe alter the molecular recognition with Ryanodine receptor 2 (RyR2), specifically expressed in cardiomyocytes. We performed an extensive structural, thermodynamic, and kinetic characterization of the variants D95V/H in the EF3 Ca2+-binding motif and of the D129V and D131H/E variants in the EF4 motif, and probed their interaction with RyR2. Our results show that the specific structural changes observed for individual CaM variants do not extend to the complex with the RyR2 target. Indeed, some common alterations emerge at the protein-protein interaction level, suggesting the existence of general features shared by the arrhythmia-associated variants. All mutants showed a faster rate of dissociation from the target peptide than wild-type CaM. Integration of spectroscopic data with exhaustive molecular dynamics simulations suggests that, in the presence of Ca2+, functional recognition involves allosteric interactions initiated by the N-terminal lobe of CaM, which shows a lower affinity for Ca2+ compared to the C-terminal lobe in the isolated protein.


Assuntos
Arritmias Cardíacas , Calmodulina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Arritmias Cardíacas/congênito , Arritmias Cardíacas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos
10.
Angew Chem Int Ed Engl ; 61(15): e202112374, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107860

RESUMO

The multi-site ubiquitination of Tau protein found in Alzheimer's disease filaments hints at the failed attempt of neurons to remove early toxic species. The ubiquitin-dependent degradation of Tau is regulated in vivo by the E3 ligase CHIP, a quality controller of the cell proteome dedicated to target misfolded proteins for degradation. In our study, by using site-resolved NMR, biochemical and computational methods, we elucidate the structural determinants underlying the molecular recognition between the ligase and its intrinsically disordered substrate. We reveal a multi-domain dynamic interaction that explains how CHIP can direct ubiquitination of Tau at multiple sites even in the absence of chaperones, including its typical partner Hsp70/Hsc70. Our findings thus provide mechanistic insight into the chaperone-independent engagement of a disordered protein by its E3 ligase.


Assuntos
Ubiquitina-Proteína Ligases , Proteínas tau , Chaperonas Moleculares/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas tau/metabolismo
11.
Int J Biol Macromol ; 201: 173-181, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016968

RESUMO

The formation of biomolecular condensates has emerged as a crucial player both in neuronal physiology and neurodegeneration. Phase separation of the Alzheimer's related protein tau into liquid condensates is facilitated by polyanions and is regulated by post-translational modifications. Given the central role of ubiquitination in proteostasis regulation and signaling, we investigated the behavior of monoubiquitinated tau during formation of condensates. We ubiquitinated the lysine-rich, four-repeat domain of tau either unspecifically via enzymatic conjugation or in a position-specific manner by semisynthesis. Ubiquitin conjugation at specific sites weakened multivalent tau/RNA interactions and disfavored tau/heparin condensation. Yet, heterogeneous ubiquitination was tolerated during phase separation and stabilized droplets against aggregation-linked dissolution. Thus, we demonstrated that cofactor chemistry and site of modification affect the mesoscopic and molecular signatures of ubiquitinated tau condensates. Our findings suggest that ubiquitination could influence the physiological states and pathological transformations of tau in cellular condensates.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/metabolismo , Humanos , Lisina/metabolismo , Ubiquitina/genética , Ubiquitinação , Proteínas tau/química
12.
Molecules ; 25(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260436

RESUMO

Alpha-synuclein (αS) is an extensively studied protein due to its involvement in a group of neurodegenerative disorders, including Parkinson's disease, and its documented ability to undergo aberrant self-aggregation resulting in the formation of amyloid-like fibrils. In dilute solution, the protein is intrinsically disordered but can adopt multiple alternative conformations under given conditions, such as upon adsorption to nanoscale surfaces. The study of αS-nanoparticle interactions allows us to better understand the behavior of the protein and provides the basis for developing systems capable of mitigating the formation of toxic aggregates as well as for designing hybrid nanomaterials with novel functionalities for applications in various research areas. In this review, we summarize current progress on αS-nanoparticle interactions with an emphasis on the conformational plasticity of the biomolecule.


Assuntos
Nanopartículas/química , Nanopartículas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Adsorção , Amiloide , Humanos , Conformação Molecular , Nanoconjugados/química , Agregados Proteicos
13.
Molecules ; 25(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545360

RESUMO

BACKGROUND: The intrinsically disordered, amyloidogenic protein Tau associates with diverse classes of molecules, including proteins, nucleic acids, and lipids. Mounting evidence suggests that fatty acid molecules could play a role in the dysfunction of this protein, however, their interaction with Tau remains poorly characterized. METHODS: In a bid to elucidate the association of Tau with unsaturated fatty acids at the sub-molecular level, we carried out a variety of solution NMR experiments in combination with circular dichroism and fluorescence measurements. Our study shows that Tau4RD, the highly basic four-repeat domain of Tau, associates strongly with arachidonic and oleic acid assemblies in a high lipid/protein ratio, perturbing their supramolecular states and itself undergoing time-dependent structural adaptation. The structural signatures of Tau4RD/fatty acid aggregates appear similar for arachidonic acid and oleic acid, however, they are distinct from those of another prototypical intrinsically disordered protein, α-synuclein, when bound to these lipids, revealing protein-specific conformational adaptations. Both fatty acid molecules are found to invariably promote the self-aggregation of Tau4RD and of α-synuclein. CONCLUSIONS: This study describes the reciprocal influence that Tau4RD and fatty acids exert on their conformational states, contributing to our understanding of fundamental aspects of Tau/lipid co-assembly.


Assuntos
Ácido Araquidônico/farmacologia , Ácido Oleico/farmacologia , Proteínas tau/química , Proteínas tau/metabolismo , Dicroísmo Circular , Ácidos Graxos Insaturados/farmacologia , Humanos , Imageamento por Ressonância Magnética , Agregados Proteicos , Conformação Proteica , Domínios Proteicos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
14.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575755

RESUMO

Ubiquitin, a protein modifier that regulates diverse essential cellular processes, is also a component of the protein inclusions characteristic of many neurodegenerative disorders. In Alzheimer's disease, the microtubule associated tau protein accumulates within damaged neurons in the form of cross-beta structured filaments. Both mono- and polyubiquitin were found linked to several lysine residues belonging to the region of tau protein that forms the structured core of the filaments. Thus, besides priming the substrate protein for proteasomal degradation, ubiquitin could also contribute to the assembly and stabilization of tau protein filaments. To advance our understanding of the impact of ubiquitination on tau protein aggregation and function, we applied disulfide-coupling chemistry to modify tau protein at position 353 with Lys48- or Lys63-linked di-ubiquitin, two representative polyubiquitin chains that differ in topology and structure. Aggregation kinetics experiments performed on these conjugates reveal that di-ubiquitination retards filament formation and perturbs the fibril elongation rate more than mono-ubiquitination. We further show that di-ubiquitination modulates tau-mediated microtubule assembly. The effects on tau protein aggregation and microtubule polymerization are essentially independent from polyubiquitin chain topology. Altogether, our findings provide novel insight into the consequences of ubiquitination on the functional activity and disease-related behavior of tau protein.


Assuntos
Ubiquitina/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Dissulfetos/química , Humanos , Lisina/metabolismo , Agregados Proteicos
15.
Angew Chem Int Ed Engl ; 59(16): 6607-6611, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32022419

RESUMO

In the brain of individuals with Alzheimer's disease, the regulatory protein ubiquitin is found conjugated to different lysine residues of tau protein assembled into pathological paired helical filaments. To shed light on the hitherto unexplored ubiquitination-linked conformational transitions of tau, the availability of in vitro ubiquitin conjugation methods is of primary importance. In our work, we focused on the four-repeat domain of tau and assembled an enzymatic machinery formed by UBE1, Ubc13, and CHIP enzymes. The enzymatic reaction resulted in monoubiquitination at multiple sites, reminiscent of the ubiquitination pattern observed in vivo. We further exploited chemoselective disulfide coupling reactions to construct three tau regioisomers with site-specific monoubiquitination. Protein aggregation experiments revealed that the multiple enzyme-derived products were unable to convert into amyloid fibrils, while the semisynthetic conjugates exhibited diverse capability to form filaments. This study contributes novel insight into the effects of a key post-translational modification on aberrant protein self-assembly.


Assuntos
Peptídeos/metabolismo , Agregados Proteicos , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/química , Sequência de Aminoácidos , Amiloide/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Peptídeos/química , Estereoisomerismo , Ubiquitinação , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Arch Biochem Biophys ; 683: 108304, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32097611

RESUMO

The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.


Assuntos
Proteínas Amiloidogênicas/química , Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética , Adsorção , Humanos , Proteína Huntingtina/química , Cinética , Substâncias Macromoleculares , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteínas tau/química
17.
J Inorg Biochem ; 199: 110796, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419675

RESUMO

Plants contain a large family of so-called calmodulin-like proteins (CMLs) which differ from canonical calmodulin in that they show greater variability in sequence, length, and number of EF-hand domains. The presence of this extended CML family has raised questions regarding the role of these proteins: are they functionally redundant or do they play specific functions in physiological plant processes? To answer these questions, comprehensive biochemical and structural information on CML proteins is fundamental. Among the 50 CMLs from Arabidopsis thaliana, herein we described the ability of CML7 to bind metal ions focusing on the Ca2+ and Mg2+ sensing properties, as well as on metal-induced conformational changes. Circular dichroism and nuclear magnetic resonance (NMR) studies indicated that both Ca2+ and Mg2+ stabilize CML7, as reflected in conformational rearrangements in secondary and tertiary structure and in increases in thermal stability of the protein. However, the conformational changes that binding induces differ between the two metal ions, and only Ca2+ binding controls a structural transition that leads to hydrophobic exposure, as suggested by 8-anilino-1-naphthalenesulfonic acid fluorescence. Isothermal titration calorimetry data coupled with NMR experiments revealed the presence of two high affinity Ca2+-binding sites in the C-lobe of CML7 and two weaker sites in the N-lobe. The paired nature of these CML7 EF-hands enables them to bind Ca2+ with positive cooperativity within each globular domain. Our results clearly place CML7 in the category of Ca2+ sensors. Along with this, the protein can bind to a model target peptide (melittin) in a Ca2+-dependent manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Cátions/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Meliteno/metabolismo , Ligação Proteica , Conformação Proteica
18.
Front Mol Neurosci ; 11: 274, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174586

RESUMO

Calcium and integrin binding protein 2 (CIB2) shares with the other members of the CIB family the ability to bind Ca2+ and Mg2+ via two functional EF-hand motifs, namely EF3 and EF4. As a cation sensor, CIB2 is able to switch to a conformation likely associated with specific biological functions yet to be clarified. Recent findings demonstrate the involvement of CIB2 in hearing physiology and a single, conservative point mutation (p.E64D) has been related to Usher Syndrome type 1J (USH1J) and non-syndromic hearing loss. We present an exhaustive biochemical and biophysical characterization of human wild type (WT) and E64D CIB2. We found that CIB2 does not possibly work as a calcium sensor under physiological conditions, its affinity for Ca2+ (Kdapp = 0.5 mM) being too low for detecting normal intracellular levels. Instead, CIB2 displays a significantly high affinity for Mg2+ (Kdapp = 290 µM), and it is probably Mg2+ -bound under physiological conditions. At odds with the homologous protein CIB1, CIB2 forms a non-covalent dimer under conditions that mimic the physiological ones, and as such it interacts with its physiological target α7B integrin. NMR spectroscopy revealed a long-range allosteric communication between the residue E64, located at the N-terminal domain, and the metal cation binding site EF3, located at the C-terminal domain. The conservative E64D mutation breaks up such inter-domain communication resulting in the impaired ability of CIB2 to switch to its Mg2+-bound form. The ability to bind the target integrin peptide was substantially conserved for E64D CIB2, thus suggesting that the molecular defect associated with USH1J resides in its inability to sense Mg2+ and adopt the required conformation.

19.
Chemistry ; 24(22): 5911-5919, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29446497

RESUMO

In biological systems, nanoparticles (NPs) elicit bioactivity upon interaction with proteins. As a result of post-translational modification, proteins occur in a variety of alternative covalent forms, including structural isomers, which present unique molecular surfaces. We aimed at a detailed description of the recognition of protein isomeric species by NP surfaces. The transient adsorption of isomeric ubiquitin (Ub) dimers by NPs was investigated by solution NMR spectroscopy. Lys63- and Lys48-linked Ub2 were adsorbed by large anionic NPs with different affinities, whereas the binding strength was similar in the cases of smaller particles. After the incorporation of paramagnetic tags into NPs, the observed site-resolved paramagnetic footprints provided a high-resolution map of the different protein surfaces binding to NPs. The approach described could be extended to further protein isoforms and more specialized NP systems to allow better control of the interactions between NPs and protein targets.


Assuntos
Nanopartículas/química , Proteínas/química , Ubiquitina/química , Adsorção , Isomerismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Processamento de Proteína Pós-Traducional
20.
Int J Biol Macromol ; 108: 24-31, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29175520

RESUMO

Ubb+1, a ubiquitin (Ub) mutant protein originating from misreading of the Ub B gene, is found accumulated in brain tissues of Alzheimer's disease patients. The mutant attracts strong interest due to its possible participation in the molecular events leading to neurodegeneration. Ubb+1 is composed of the globular domain of Ub, linked to a 19-residue C-terminal peptide. Based on NMR relaxation and solvent accessibility measurements we obtained new insight into the molecular properties of Ubb+1. We further determined the thermal stability of Ubb+1 in the monomeric form, and in Lys48- and Lys63-linked dimers. Finally, we explored the influence of the C-terminal fragment on the interactions of Ubb+1 with an isolated UBA2 domain and with membrane mimics. Our data indicate that the C-terminal fragment of Ubb+1 is overall highly flexible, except for a short stretch which appears less solvent-exposed. While influencing the hydrodynamic properties of the globular domain, the fragment does not establish long-lived interactions with the globular domain. It results that the structure and stability of Ub are minimally perturbed by the peptide extension. However, binding to UBA2 and to membrane mimics are both affected, exemplifying possible changes in biomolecular recognition experienced by the disease-associated Ubb+1 compared to the wild-type protein.


Assuntos
Doença de Alzheimer/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Ubiquitina/química , Ubiquitina/metabolismo , Adsorção , Reparo do DNA , Humanos , Lipossomos/química , Modelos Moleculares , Proteínas Mutantes/genética , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Solventes/química , Temperatura , Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA