RESUMO
Porphyrin dyes with strong push-pull type intramolecular charge transfer (ICT) character and broad absorption across the visible spectrum are reported. This combination of properties has been achieved by functionalizing the periphery of hypervalent and highly electron-deficient phosphorus(V) and antimony(V) centered porphyrins with electron-rich triphenylamine (TPA) groups. As a result of the large difference in electronegativity between the porphyrin ring and the peripheral groups, their absorption profiles show several strong charge transfer transitions, which in addition to the porphyrin-centered π â π* transitions, make them panchromatic black dyes with high absorption coefficients between 200 and 800 nm. Time-resolved optical and electron paramagnetic resonance (EPR) studies show that the lowest triplet state also has ICT character and is populated by spin-orbit coupled intersystem crossing.
RESUMO
Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000â nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.
RESUMO
Single-site molecular electrocatalysts, especially those that perform catalytic conversion of N2 to NH3 under mild conditions, are highly desirable to derive fundamental structure-activity relations and as potential alternatives to the current energy-consuming Haber-Bosch ammonia production process. Combining theoretical calculations with experimental evidence, it has been shown that easily reducible cobalt porphyrins catalyze the six-electron, six-proton reduction of dinitrogen to NH3 at neutral pH and under ambient conditions. Two easily reducible N-fused cobalt porphyrins - CoNHF and CoNHF(Br)2 - reveal NRR activity with Faradic efficiencies between 6-7.5 % with ammonia yield rates of 300-340â µmol g-1 h-1. Contrary to this, much harder-to-reduce N-fused porphyrins - CoNHF(Ph)2 and CoNHF(PE)2 - reveal no NRR activity. The present study highlights the significance of tuning the redox and structural properties of single-site NRR electrocatalysts for improved NRR activity under mild conditions.
RESUMO
Modulation of intramolecular charge transfer (ICT) has been tested in two antimony(V) porphyrins, SbT(DMP)P(OMe)2·PF6 and SbT(DMP)P(OTFE)2·PF6, where the meso-positions are occupied by 3,5-dimethoxyphenyl (DMP), and the axial positions are linked with either methoxy (OMe) or trifluoroethoxy (OTFE) units, respectively. The presence of the Sb(+5) ion makes the porphyrin center electron poor. Under this situation, placing electron-rich units in the meso-position creates a condition for push-pull type ICT in the SbT(DMP)P(OMe)2·PF6. Remarkably, it is shown that the ICT character can be further enhanced in SbT(DMP)P(OTFE)2·PF6 with the help of electron-withdrawing TFE units in the axial position, which makes the porphyrin center even more electron scarce. The steady-state and transient studies as well as solvatochromism studies establish the ICT in SbT(DMP)P(OMe)2·PF6 and SbT(DMP)P(OTFE)2·PF6, and the strength of the ICT can be modulated by exploiting the structural properties of antimony(V) porphyrin. The existence of ICT is further supported by density functional theory calculations. The transient studies show that upon excitation of these porphyrin, their charge-transfer states convert to a full charger-separated states with appreciable lifetimes.
RESUMO
Fundamental discoveries in electron transfer advance scientific and technological advancements. It is suggested that in plant and bacterial photosynthesis, the primary donor, a chlorophyll or bacteriochlorophyll dimer, forms an initial excited symmetry-breaking charge transfer state (1CT*) upon photoexcitation that subsequently promotes sequential electron transfer (ET) events. This is unlike monomeric photosensitizer-bearing donor-acceptor dyads where ET occurs from the excited donor or acceptor (1D* or 1A*). In the present study, we successfully demonstrated the former photochemical event using an excited charge transfer molecule as a donor. Electron-deficient perylenediimide (PDI) is functionalized with three electron-rich piperidine entities at the bay positions, resulting in a far-red emitting CT molecule (DCT). Further, this molecule is covalently linked to another PDI (APDI) carrying no substituents at the bay positions, resulting in wide-band capturing DCT-APDI conjugates. Selective excitation of the CT band of DCT in these conjugates leads to an initial 1DCT* that undergoes subsequent ET involving APDI, resulting in DCT +-APDI - charge separation product (kCS~109â s-1). Conversely, when APDI was directly excited, ultrafast energy transfer (ENT) from 1APDI* to DCT (kENT~1011â s-1) followed by ET from 1DCT* to PDI is witnessed. While increasing solvent polarity improved kCS rates, for a given solvent, the magnitude of the kCS values was almost the same, irrespective of the excitation wavelengths. The present findings demonstrate ET from an initial CT state to an acceptor is key to understanding the intricate ET events in complex natural and bacterial photosynthetic systems possessing multiple redox- and photoactive entities.
RESUMO
Structurally well-defined self-assembled supramolecular multi-modular donor-acceptor conjugates play a significant role in furthering our understanding of photoinduced energy and electron transfer events occurring in nature, e. g., in the antenna-reaction centers of photosynthesis and their applications in light energy harvesting. However, building such multi-modular systems capable of mimicking the early events of photosynthesis has been synthetically challenging, causing a major hurdle for its growth. Often, multi-modularity is brought in by combining both covalent and noncovalent approaches. In the present study, we have developed such an approach wherein a π-extended conjugated molecular cleft, two zinc(II)porphyrin bearing bisstyrylBODIPY (dyad, 1), has been synthesized. The binding of 1 via a 'two-point' metal-ligand coordination of a bis-pyridyl fulleropyrrolidine (2), forming a stable self-assembled supramolecular complex (1 : 2), has been established. The self-assembled supramolecular complex has been fully characterized by a suite of physico-chemical methods, including TD-DFT studies. From the established energy diagram, both energy and electron transfer events were envisioned. In dyad 1, selective excitation of zinc(II)porphyrin leads to efficient singlet-singlet excitation transfer to (bisstyrly)BODIPY with an energy transfer rate constant, kEnT of 2.56×1012â s-1. In complex 1 : 2, photoexcitation of zinc(II)porphyrin results in ultrafast photoinduced electron transfer with a charge separation rate constant, kCS of 2.83×1011â s-1, and a charge recombination rate constant, kCR of 2.51×109â s-1. For excitation at 730â nm corresponding to bisstyrylBODIPY, similar results are obtained, where a biexponential decay yielded estimated values of kCS 3.44×1011â s-1 and 2.97×1010â s-1, and a kCR value of 2.10×1010â s-1. The newly built self-assembled supramolecular complex has been shown to successfully mimic the early events of the photosynthetic antenna-reaction center events.
RESUMO
The importance of diameter-sorted single-wall carbon nanotubes (SWCNTs) noncovalently bound to a donor-acceptor molecular cleft, 1, in prolonging the lifetime of charge-separated states is successfully demonstrated. For this, using a multistep synthetic procedure, a wide-band capturing, multimodular, C60-bisstyrylBODIPY-(zinc porphyrin)2, molecular cleft 1, was newly synthesized and shown to bind diameter-sorted SWCNTs. The molecular cleft and its supramolecular assemblies were characterized by a suite of physicochemical techniques. Free-energy calculations suggested that both the (6,5) and (7,6) SWCNTs bound to 1 act as hole acceptors during the photoinduced sequential electron transfer events. Consequently, selective excitation of 1 in 1:SWCNT hybrids revealed a two-step electron transfer, leading to the formation of charge-separated states. Due to the distant separation of the cation and anion radical species within the supramolecules, improved lifetimes of the charge-separated states could be achieved. The present supramolecular strategy of improving charge separation involving SWCNTs and donor-acceptor molecular clefts highlights the potential application of these hybrid materials for various light energy harvesting and optoelectronic applications.
RESUMO
We have designed, synthesized, and characterized a donor-acceptor triad, SPS-PPY-C60, that consists of a π-interacting phenothiazine-linked porphyrin as a donor and sensitizer and fullerene as an acceptor to seek charge separation upon photoexcitation. The optical absorption spectrum revealed red-shifted Soret and Q-bands of porphyrin due to charge transfer-type interactions involving the two ethynyl bridges carrying electron-rich and electron-poor substituents. The redox properties suggested that the phenothiazine-porphyrin part of the molecule is easier to oxidize and the fullerene part is easier to reduce. DFT calculations supported the redox properties wherein the electron density of the highest molecular orbital (HOMO) was distributed over the donor phenothiazine-porphyrin entity while the lowest unoccupied molecular orbital (LUMO) was distributed over the fullerene acceptor. TD-DFT studies suggested the involvement of both the S2 and S1 states in the charge transfer process. The steady-state emission spectrum, when excited either at porphyrin Soret or visible band absorption maxima, revealed quenched emission both in nonpolar and polar solvents, suggesting the occurrence of excited state events. Finally, femtosecond transient absorption spectral studies were performed to witness the charge separation by utilizing solvents of different polarities. The transient data was further analyzed by GloTarAn by fitting the data with appropriate models to describe photochemical events. From this, the average lifetime of the charge-separated state calculated was found to be 169 ps in benzonitrile, 319 ps in dichlorobenzene, 1.7 ns in toluene for Soret band excitation, and â¼320 ps for Q-band excitation in benzonitrile.
RESUMO
Unraveling the intriguing aspects of the intramolecular charge transfer (ICT) phenomenon of multi-modular donor-acceptor-based push-pull systems are of paramount importance considering their promising applications, particularly in solar energy harvesting and light-emitting devices. Herein, a series of symmetrical and unsymmetrical donor-acceptor chromophores 1-6, are designed and synthesized by the Corey-Fuchs reaction via Evano's condition followed by [2+2] cycloaddition retroelectrocyclic ring-opening reaction with strong electron acceptors TCNE and TCNQ in good yields (~60-85 %). The photophysical, electrochemical, and computational studies are investigated to explore the effect of incorporation of strong electron acceptors 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and dicyanoquinodimethane (DCNQ) with phenothiazine (PTZ) donor. An additional low-lying broad absorption band extended towards the near-infrared (NIR) region suggests charge polarization after the introduction of the electron acceptors in both symmetrical and asymmetrical systems, leading to such strong ICT bands. The electrochemical properties reveal that reduction potentials of 3 and 6 are lower than those of 2 and 5, suggesting DCNQ imparts more on the electronic properties and hence largely contributes to the stabilization of LUMO energy levels than TCBD, in line with theoretical observations. Relative positions of the frontier orbitals on geometry-optimized structures further support accessing donor-acceptor sites responsible for the ICT transitions. Eventually, ultrafast carrier dynamics of the photoinduced species are investigated by femtosecond transient absorption studies to identify their spectral characteristics and target analysis further provides information about different excited states photophysical events including ICT and their associated time profiles. The key findings obtained here related to excited state dynamical processes of these newly synthesized systems are believed to be significant in advancing their prospect of utilization in solar energy conversion and related photonic applications.
RESUMO
Symmetry breaking charge transfer is one of the important photo-events occurring in photosynthetic reaction centers that is responsible for initiating electron transfer leading to a long-lived charge-separated state and has been successfully employed in light-to-electricity converting optoelectronic devices. In the present study, we report a newly synthesized, far-red absorbing and emitting BODIPY-dimer to undergo symmetry-breaking charge transfer leading to charge-separated states of appreciable lifetimes in polar solvents. Compared to its monomer analog, both steady-state and time-resolved fluorescence originating from the S1 state of the dimer revealed quenching which increased with an increase in solvent polarity. The electrostatic potential map from DFT and the time-dependent DFT calculations suggested the existence of a quadrupolar type charge transfer state in polar solvents, and the singlet excited state to be involved in the charge separation process. The electrochemically determined redox gap being smaller than the energy of the S1 state supported the thermodynamic feasibility of the envisioned symmetry-breaking charge transfer and separation. The spectrum of the charge-separated state arrived from spectroelectrochemical studies, revealing diagnostic peaks helpful for transient spectral interpretation. Finally, ultrafast transient pump-probe spectroscopy provided conclusive evidence of diabatic charge separation in polar solvents by far-red pulsed laser light irradiation. The measured lifetime of the final charge-separated states was found to be 165 ps in dichlorobenzene, 140 ps in benzonitrile, and 43 ps in dimethyl sulfoxide, revealing their significance in light energy harvesting, especially from the less-explored far-red region.
RESUMO
Significant interest in the electrocatalytic reduction of molecular nitrogen to ammonia (the nitrogen reduction reaction: NRR) has focused attention on transition metal carbides as possible electrocatalysts. However, a fundamental understanding of carbide surface structure/NRR reactivity relationships is sparse. Herein, electrochemistry, DFT-based calculations, and in situ photoemission studies demonstrate that NbC, deposited by magnetron sputter deposition, is active for NRR at pH 3.2 but only after immersion of an ambient-induced Nb2O5 surface layer in 0.3 M NaOH, which leaves Nb suboxides with niobium in intermediate formal oxidation states. Photoemission data, however, show that polarization to -1.3 V vs Ag/AgCl restores the Nb2O5 overlayer, correlating with electrochemical measurements showing inhibition of NRR activity under these conditions. In contrast, a similar treatment of a sputter-deposited TaC sample in 0.3 M NaOH fails to reduce the ambient-induced Ta2O5 surface layer, and TaC is inactive for NRR at potentials more positive than -1.0 V even though a significant cathodic current is observed. A TaC sample with surface oxide partially reduced by Ar ion sputtering in UHV prior to in situ transfer to UHV exhibits a restored Ta2O5 surface layer after electrochemical polarization to -1.0 V vs Ag/AgCl. The electrochemical and photoemission results are in accord with DFT-based calculations indicating greater N≡N bond activation for N2 bound end-on to Nb(IV) and Nb(III) sites than for N2 bound end-on to Nb(V) sites. Thus, theory and experiment demonstrate that with respect to NbC, the formation and stabilization of intermediate (non-d0) oxidation states for surface transition metal ions is critical for N≡N bond activation and NRR activity. Additionally, the Nb suboxide surface, formed by immersion in 0.3 M NaOH of ambient-exposed NbC, is shown to undergo reoxidation to catalytically inactive Nb2O5 at -1.3 V vs Ag/AgCl, possibly due to hydrolysis or other, as yet not understood, phenomena.
RESUMO
We developed a procedure for selective 2,4-dimethylphenol, DMPh, direct electro-oxidation to 3,3',5,5'-tetramethyl-2,2'-biphenol, TMBh, a C-C coupled product. For that, we used an electrode coated with a product-selective molecularly imprinted polymer (MIP). The procedure is reasonably selective toward TMBh without requiring harmful additives or elevated temperatures. The TMBh product itself was used as a template for imprinting. We followed the template interaction with various functional monomers (FMs) using density functional theory (DFT) simulations to select optimal FM. On this basis, we used a prepolymerization complex of TMBh with carboxyl-containing FM at a 1:2 TMBh-to-FM molar ratio for MIP fabrication. The template-FM interaction was also followed by using different spectroscopic techniques. Then, we prepared the MIP on the electrode surface in the form of a thin film by the potentiodynamic electropolymerization of the chosen complex and extracted the template. Afterward, we characterized the fabricated films by using electrochemistry, FTIR spectroscopy, and AFM, elucidating their composition and morphology. Ultimately, the DMPh electro-oxidation was performed on the MIP film-coated electrode to obtain the desired TMBh product. The electrosynthesis selectivity was much higher at the electrode coated with MIP film in comparison with the reference nonimprinted polymer (NIP) film-coated or bare electrodes, reaching 39% under optimized conditions. MIP film thickness and electrosynthesis parameters significantly affected the electrosynthesis yield and selectivity. At thicker films, the yield was higher at the expense of selectivity, while the electrosynthesis potential increase enhanced the TMBh product yield. Computer simulations of the imprinted cavity interaction with the substrate molecule demonstrated that the MIP cavity promoted direct coupling of the substrate to form the desired TMBh product.
RESUMO
Platinum(II) π-extended porphyrins fused with pentacenequinone and dihydropentacene have been successfully synthesized. These porphyrins were investigated using various techniques including absorption, steady-state, and time-resolved phosphorescence spectroscopy and differential pulse voltammetry. UV-vis absorption spectra of pentacenequinone-fused porphyrins (SW-Pt1 and SW-Pt2) showed unusually broad and nontypical absorption patterns. Phosphorescence spectra of SW-Pt1, SW-Pt2, and SW-Pt3 displayed similar emissions in the 704-706 nm region indicating electronic transitions of similar origin; however, the triplet lifetimes were found to be quenched in the case of both SW-Pt1 and SW-Pt2, suggesting the occurrence of excited-state events. Facile reductions were obtained for both the pentacene-quinone-fused monomer (SW-Pt2) and dimer (SW-Pt1) and were identified to be located at the pentacenequinone components. The observed orbital segregations for SW-Pt2 and SW-Pt1 from DFT calculations supported the possibility of charge transfer in these push-pull systems. Interestingly, the established energy level diagram revealed that the charge transfer from the triplet excited Pt porphyrin is thermodynamically an uphill process. Systematic studies involving both femtosecond and nanosecond transient absorption techniques revealed that the singlet excited Pt porphyrins undergo an intermediate charge transfer state prior to populating the triplet state, providing a plausible explanation for phosphorescence quenching. The lifetime of the intermediate charge transfer states was found to be 25.9 and 5.68 ps, respectively, for SW-Pt1 and SW-Pt2.
RESUMO
Invited for the cover of this issue are the groups of Fernando Fernández-Lázaro and Ángela Sastre-Santos at the Universidad Miguel Hernández, Elche, Spain, and Francis D'Souza at the University of North Texas at Denton, Texas, USA. The image depicts the structure and properties of bis-styryl BODIPY-perylenediimide donor-acceptor constructs. Read the full text of the article at 10.1002/chem.202301686.
RESUMO
Singlet oxygen (1O2) producing photosensitizers are highly sought for developing new photodynamic therapy agents and facilitating 1O2-involved chemical reactions. Often singlet oxygen is produced by the reaction of triplet-excited photosensitizers with dioxygen via an energy transfer mechanism. In the present study, we demonstrate a charge transfer mechanism to produce singlet oxygen involving push or pull functionalized porphyrins. For this, 20 ß-pyrrole functionalized porphyrins carrying either an electron-rich push or electron-deficient pull group have been newly synthesized. Photoexcitation of these push-pull porphyrins has been shown to produce high-energy MPδ+-Aδ- or MPδ--Dδ+ charge transfer states. Subsequent charge recombination results in populating the triplet excited states of extended lifetimes in the case of the push group containing porphyrins that eventually react with dioxygen to produce the reactive singlet oxygen of relatively higher quantum yields. The effect of the push and pull groups on the porphyrin periphery in governing initial charge transfer, the population of triplet excited states and their lifetimes, and resulting in improved singlet oxygen quantum yields are systematically probed. The improved performance of 1O2 generation by porphyrins carrying push groups is borne out from this study.
RESUMO
Using the popular metal-ligand axial coordination self-assembly approach, donor-acceptor conjugates have been constructed using zinc tetrapyrroles (porphyrin (ZnP), phthalocyanine (ZnPc), and naphthalocyanine (ZnNc)) as electron donors and imidazole functionalized tetracyanobutadiene (Im-TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded-tetracyanobutadiene (Im-DCNQ) as electron acceptors. The newly formed donor-acceptor conjugates were fully characterized by a suite of physicochemical methods, including absorption and emission, electrochemistry, and computational methods. The measured binding constants for the 1 : 1 complexes were in the order of 104 -105 â M-1 in o-dichlorobenzene. Free-energy calculations and the energy level diagrams revealed the high exergonicity for the excited state electron transfer reactions. However, in the case of the ZnNc:Im-DCNQ complex, owing to the facile oxidation of ZnNc and facile reduction of Im-DCNQ, slow electron transfer was witnessed in the dark without the aid of light. Systematic transient pump-probe studies were performed to secure evidence of excited state charge separation and gather their kinetic parameters. The rate of charge separation was as high as 1011 â s-1 suggesting efficient processes. These findings show that the present self-assembly approach could be utilized to build donor-acceptor constructs with powerful electron acceptors, TCBD and DCNQ, to witness ground and excited state charge transfer, fundamental events required in energy harvesting, and building optoelectronic devices.
RESUMO
Donor-acceptor systems in which a donor phenanthroimidazole (PhI) is directly connected to a BODIPY acceptor (Dyad1) and separated by an ethynyl bridge between PhI and BODIPY (Dyad2) have been designed, synthesized, and characterized by various spectroscopic and electrochemical techniques. Optical absorption and 1H NMR characteristics of both dyads with those of constituent individuals suggest that there exists a minimum π-π interaction between phenanthroimidazole and BODIPY. Quenched emission of both the dyads was observed when excited either at phenthaoimidazole absorption maxima or at BODIPY absorption maxima in all three investigated solvents. The detailed spectral analysis provided evidence for an intramolecular photoinduced excitation energy transfer (PEnT) from the singlet excited state of phenanthroimidazole to BODIPY and photoinduced electron transfer (PET) from the ground state of phenanthroimidazole to BODIPY. Transient absorption studies suggest that charge-separated species (PhIâ¢+ - BODIPYâ¢-) are generated at a rate constant of (1.16 ± 0.01) × 108 s-1 for the dyads Dyad1 and (5.15 ± 0.03) × 108 s-1 and for Dyad2 whereas energy transfer rate constants were much higher and were on the order of (1.1 ± 0.02) × 1010 s-1 and (1.6 ± 0.02) × 1010 s-1 for Dyad1 and Dyad2, respectively, signifying their usefulness in light energy harvesting applications.
RESUMO
Two wide-band-capturing donor-acceptor conjugates featuring bis-styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the 1 PDI* to BODIPY, and a subsequent electron transfer from the 1 BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground-state interactions between the donor and acceptor entities. Steady-state fluorescence and excitation spectral recordings provided evidence of singlet-singlet energy transfer in these dyads, and quenched fluorescence of bis-styrylBODIPY emission in the dyads suggested additional photo-events. The facile oxidation of bis-styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1 and S2 states, derived from time-dependent DFT calculations, supported excited charge transfer in these dyads. Spectro-electrochemical studies on one-electron-oxidized and one-electron-reduced dyads and the monomeric precursor compounds were also performed in a thin-layer optical cell under corresponding applied potentials. From this study, both bis-styrylBODIPYâ + and PDIâ - could be spectrally characterizes and were subsequently used in characterizing the electron-transfer products. Finally, pump-probe spectral studies were performed in dichlorobenzene under selective PDI and bis-styrylBODIPY excitation to secure energy and electron-transfer evidence. The measured rate constants for energy transfer, kENT , were in the range of 1011 â s-1 , while the electron transfer rate constants, kET , were in the range of 1010 â s-1 , thus highlighting their potential use in solar energy harvesting and optoelectronic applications.
RESUMO
The fusion of tetrapyrroles with aromatic heterocycles constitutes a useful tool for manipulating their opto-electronic properties. In this work, the synthesis of naphthodithiophene-fused porphyrins was achieved through a Heck reaction-based cascade of steps followed by the Scholl reaction. The naphthodithiophene-fused porphyrins display a unique set of optical and electronic properties. Fusion of the naphtho[2,1-b:3,4-b']dithiophene to porphyrin (F2VTP) leads to a ~20% increase in the fluorescence lifetime, which is accompanied, unexpectedly, by a more than two-fold drop in the emission quantum yield (Ï=0.018). In contrast, fusion of the isomeric naphtho[1,2-b:4,3-b']dithiophene to porphyrin (F3VPT) results in a ~1.5-fold increase in the fluorescence quantum yield (Ï=0.13) with a concomitant ~30 % increase in the fluorescence lifetime. This behavior suggests that fusion of the porphyrin with the naphthodithiopheno-system mainly affects the radiative rate constant in the Q-state deactivation pathway, where the effects of the isomeric naphtho[2,1-b:3,4-b']dithiophene- versus naphtho[1,2-b:4,3-b']dithiophene-fusion are essentially the opposite. Interestingly, nucleus-independent chemical shifts analysis revealed a considerable difference between the aromaticities of these two isomeric systems. Our results demonstrate that subtle structural differences in the fused components of the porphyrin can be reflected in rather significant differences between the photophysical properties of the resulting systems.
RESUMO
A series of pyrazinepyrene-fused zinc phthalocyanines (ZnPc-Pyrn) have been newly synthesized by reacting quinoxaline and the corresponding diamino-functionalized phthalocyanines as a new class of π-extended phthalocyanine systems. Bathochromically shifted absorption as a function of the number of pyrazinepyrene entities due to extended π-conjugation and quenched fluorescence due to the presence of fused pyrazinepyrene were witnessed. The electronic structures of these phthalocyanines were probed by systematic computational and electrochemical studies, while the excited-state properties were examined by pump-probe spectroscopies operating at the femto- and nanosecond time scales. Similar to the excited singlet lifetimes, the excited triplet states also revealed diminished lifetimes with an increased number of pyrazinepyrene entities. Further, the coordinatively unsaturated zinc in these molecules was coordinated with phenyl imidazole-functionalized fullerene, ImC60, to form a new series of donor-acceptor conjugates. Upon full characterization of these conjugates, the occurrence of excited-state charge separation was established by transient pump-probe spectroscopy, covering wide temporal and spatial regions. The lifetime of the final charge-separated states was â¼2 ns and decreased with an increase in the number of fused pyrazinepyrene units.