Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794532

RESUMO

The utilization of lattice-type cellular architectures has seen a significant increase, owing to their predictable shape and the ability to fabricate templated porous materials through low-cost 3D-printing methods. Frames based on atomic lattice structures such as face-centered cubic (FCC), body-centered cubic (BCC), or simple cubic (SC) have been utilized. In FDM, the mechanical performance has been impeded by stress concentration at the nodes and melt-solidification interfaces arising from layer-by-layer deposition. Adding plates to the frames has resulted in improvements with a concurrent increase in weight and hot-pocket-induced dimensional impact in the closed cells formed. In this paper, we explore compressive performance from the partial addition of plates to the frames of a SC-BCC lattice. Compression testing of both single unit cells and 4 × 4 × 4 lattices in all three axial directions is conducted to examine stress transfer to the nearest neighbor and assess scale-up stress transfer. Our findings reveal that hybrid lattice structure unit cells exhibit significantly improved modulus in the range of 125% to 393%, specific modulus in the range of 13% to 120%, and energy absorption in the range of 17% to 395% over the open lattice. The scaled-up lattice modulus increased by 8% to 400%, specific modulus by 2% to 107%, and energy absorption by 37% to 553% over the lattice frame. Parameters that emerged as key to improved lightweighting.

2.
Polymers (Basel) ; 13(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372162

RESUMO

Biopolymer foams manufactured using CO2 enables a novel intersection for economic, environmental, and ecological impact but limited CO2 solubility remains a challenge. PHBV has low solubility in CO2 while PCL has high CO2 solubility. In this paper, PCL is used to blend into PBHV. Both unfoamed and foamed blends are examined. Foaming the binary blends at two depressurization stages with subcritical CO2 as the blowing agent, produced open-cell and closed-cell foams with varying cellular architecture at different PHBV concentrations. Differential Scanning Calorimetry results showed that PHBV had some solubility in PCL and foams developed a PCL rich, PHBV rich and mixed phase. Scanning Electron Microscopy and pcynometry established cell size and density which reflected benefits of PCL presence. Acoustic performance showed limited benefits from foaming but mechanical performance of foams showed a significant impact from PHBV presence in PCL. Thermal performance reflected that foams were affected by the blend thermal conductivity, but the impact was significantly higher in the foams than in the unfoamed blends. The results provide a pathway to multifunctional performance in foams of high performance biopolymers such as PBHV through harnessing the CO2 miscibility of PCL.

3.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204206

RESUMO

Submerged steel pipes are susceptible to corrosion due to long exposure under harsh corrosive conditions. Here, we investigated the reliability and effectiveness of nonwoven zinc(II) oxide-polyvinylidene fluoride (ZnO-PVDF) nanocomposite fiber textiles as an embedded corrosion sensor. An accelerated thermal cyclic method paired to electrochemical impedance spectroscopy (EIS) was used for this purpose. Sensor accuracy and reliability were determined using the textile and instrument as reference electrodes. The results showed that the coating and the sensor improved the corrosion resistance when ZnO was added to the sensor textile and introduced into the coating. As the coating's glass transition was approached, the corrosion performance of the coating degraded and the sensor accuracy decreased. The results suggested that the flexible sensor is reliable at both monitoring the corrosion and acting as a corrosion barrier.

4.
Materialia (Oxf) ; 162021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34109305

RESUMO

Intravascular stents for pediatric patients that degrade without inhibiting vessel growth remain a clinical challenge. Here, poly(L-lactide) fibers (DH-BDS) at two thicknesses, 250 µm and 300 µm, were assembled into large, pediatric-sized stents (Ø10 - Ø20 mm). Fibers were characterized mechanically and thermally, then stent mechanical properties were compared to metal controls, while mass loss and degradation kinetics modeling estimated total stent degradation time. Thicker fibers displayed lower stiffness (1969 ± 44 vs 2126 ± 37 MPa) and yield stress (117 ± 12 vs 137 ± 5 MPa) than thinner counterparts, but exhibited similar fail strength (478 ± 28 vs 476 ± 16 MPa) at higher strains (47 ± 2 vs 44 ± 2%). Stents all exhibited crystallinity between 51.3 - 54.4% and fiber glass transition temperatures of 88.6 ± 0.5 °C and 84.6 ± 0.5 °C were well above physiological ranges. Radial strength (0.31 ± 0.01 - 0.34 ± 0.02 N/mm) in thinner stents was similar to metal stents (0.24 - 0.41 N/mm) up to Ø14 mm with no foreshortening and thicker coils granted comparable radial strength (0.32 ± 0.02 - 0.34 ± 0.02 N/mm) in stents larger than Ø14 mm. Both 10 mm (1.17 ± 0.02 % and 0.86 ± 0.1 %) and 12 mm (1.1 ± 0.03% and 0.89 ± 0.1%) stents exhibited minimal weight loss over one year. Degradation kinetics models predicted full stent degradation within 2.8 - 4.5 years depending on thickness. DH-BDS exhibiting hoop strength similar to metal stents and demonstrating minimal degradation and strength loss over the first year before completely disappearing within 3 to 4.5 years show promise as a pediatric interventional alternative to current strategies.

5.
Sci Rep ; 10(1): 17771, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082364

RESUMO

Ecological, health and environmental concerns are driving the need for bio-resourced foams for the building industry. In this paper, we examine foams made from polylactic acid (PLA) and micro cellulose fibrils (MCF). To ensure no volatile organic compounds in the foam, supercritical CO2 (sc-CO2) physical foaming of melt mixed systems was conducted. Mechanical and thermal conductivity properties were determined and applied to a net zero energy model house. The results showed that MCF had a concentration dependent impact on the foams. First structurally, the presence of MCF led to an initial increase followed by a decrease of open porosity, higher bulk density, lower expansion ratios and cell size. Differential Scanning Calorimetry and Scanning Electron Microscopy revealed that MCF decreased the glass transition of PLA allowing for a decrease in cell wall thickness when MCF was added. The mechanical performance initially increased with MCF and then decreased. This trend was mimicked by thermal insulation which initially improved. Biodegradation tests showed that the presence of cellulose in PLA improved the compostability of the foams. A maximum comparative mineralization of 95% was obtained for the PLA foam with 3 wt.% MCF when expressed as a fractional percentage of the pure cellulose reference. Energy simulations run on a model house showed that relative to an insulation of polyurethane, the bio-resourced foams led to no more than a 12% increase in heating and cooling. The energy efficiency of the foams was best at low MCF fractions.

6.
Sensors (Basel) ; 20(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481573

RESUMO

Corrosion in underground and submerged steel pipes is a global problem. Coatings serve as an impermeable barrier or a sacrificial element to the transport of corrosive fluids. When this barrier fails, corrosion in the metal initiates. There is a critical need for sensors at the metal/coating interface as an early alert system. Current options utilize metal sensors, leading to accelerating corrosion. In this paper, a non-conductive sensor textile as a viable solution was investigated. For this purpose, non-woven Zinc (II) Oxide-Polyvinylidene Fluoride (ZnO-PVDF) nanocomposite fiber textiles were prepared in a range of weight fractions (1%, 3%, and 5% ZnO) and placed at the coating/steel interface. The properties of ZnO-PVDF nanocomposite meshes were characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) and d33 meter. Electrochemical impedance spectroscopy (EIS) testing was performed during the immersion of the coated samples to validate the effectiveness of the sensor textile. The results offer a new option for sub-surface corrosion sensing using low cost, easily fabricated sensor textiles.

7.
Polymers (Basel) ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861578

RESUMO

Developing an environmentally benign styrene foam is a critical environmental need. Supercritical CO2 use in foams has proven to be a valuable path. Adding fillers to increase bubble nucleation has been pursued concurrently. A prominent filler used is high surface area fillers, such as smectic clays. However, all studies to date show a limit of 152% in compressive moduli and 260% in the compressive stress. The values, even with such gains, limit structural application. A seminal work in 1987 by Suh and Cotton proved that carbonyl linkages in calcium carbonates and CO2 interact and impact nucleation efficiency and performance in supercritical CO2 foams. In this paper, a high surface area clay (layer double hydroxides) which begins in an exfoliated state, then functionalized with a long chain alkyl carboxylate (stearic acid) is synthesized. The result is a remarkable multi-fold improvement to the compressive properties in comparison to polystyrene (PS); a 268% and 512% increase in compressive modulus and strength, respectively. Using a pre-delaminated approach, the higher surface area was achieved in the clays. The presence of the stearate improved the interactions between the clay galleries and PS through hydrophobic-hydrophobic interactions. The glass transition temperature of the nanocomposites was observed to shift to higher values after foaming. The results point to a new path to increase performance using a pre-delaminated clay with functional groups for environmentally benign foams.

8.
Sci Rep ; 6: 34726, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703226

RESUMO

Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m-1 K-1, which was 72.3% higher than that (3.600 W m-1 K-1) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler's interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite's use as an engineered material.

9.
Int J Biol Macromol ; 82: 168-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586590

RESUMO

To enhance the mechanical and water-resistant properties of soy protein isolate (SPI) based films, hydrophobic TriSilanolPhenyl polyhedral oligomeric silsesquioxanes (POSS) was incorporated to modify the SPI films. POSS has three SiOH groups in a molecular, which is employed to cross-link SPI with the help of 3-glycidoxypropyltrimethoxysilane (GPTMS). POSS is a structure of eight phenol groups, playing a critical role in improving the physical and mechanical properties. The X-ray diffraction (XRD) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) were used to characterize the films. The degree of reaction of SiOH groups in the POSS was estimated to be 53.0% according with the absorbance of ATR FT-IR spectra. Although the elongation at break was reduced by 52.6%, the tensile modulus, tensile strength and 10% offset yield strength were significantly increased by 86.6%, 34.0% and 56.8%, respectively, due to the cross-linking reactions among SPI, GPTMS and POSS. The results of water-resistant tests showed that the 24-hour water absorption was dramatically reduced by 54.7%.


Assuntos
Compostos de Organossilício/química , Proteínas de Soja/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Fenômenos Mecânicos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
10.
Mater Sci Eng C Mater Biol Appl ; 38: 315-24, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24656384

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) and Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) are biopolymers that have the potential to be used in applications of bone healing. In this study, it is hypothesized that the polymer blend has the combined strength and osteoconductivity to support osteoblast collagen formation. PBAT (PBAT 100), and a blend with 20% PHBV (PBAT 80) were extruded in the form of fibers and then knitted in the form of mesh. These were tested in the warp as well as weft direction for the tensile properties; these showed that the weft direction had higher performance than the warp. The individual fibers were kept in phosphate buffered saline (PBS) over the period of 8 weeks and were tested for the storage and loss modulus using a dynamic mechanical analyser (DMA). The results indicated that mechanical relaxation strength showed a decrease and then an increase. In vitro osteoconductivity studies were done by using differentiating osteoblasts (MC3T3-E1 subclone 4 cells). Environmental Scanning Electron Microscopy (ESEM) showed that pre-soaking the samples in α-MEM for two weeks resulted in cell attachment and growth. X-ray diffraction (XRD) was used to determine the change in structure of polymers due to in vitro degradation for two weeks. Raman spectroscopy showed that all scaffolds supported the formation of a collagenous network over the scaffold surfaces. For a combination of knittable manufacturing, mechanical performance and osteoconductivity, blends offer an effective route.


Assuntos
Materiais Biocompatíveis/farmacologia , Osseointegração/efeitos dos fármacos , Poliésteres/farmacologia , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular , Módulo de Elasticidade/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Estresse Mecânico , Resistência à Tração/efeitos dos fármacos , Difração de Raios X
11.
Arch Environ Contam Toxicol ; 66(4): 549-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24442186

RESUMO

Copper is a common pollutant found in watersheds that exerts toxic effects on both invertebrates and vertebrates. Layer double hydroxide (LDH) clays are able to adsorb a wide range of contaminants through ion-exchange mechanisms. Coating LDH clays with various materials alters the aggregation of clay particles into the nano-size range, thus increasing relative surface area and offering great potential for contaminant remediation. The goal of this study was to determine if treatment with coated LDH clays decreases the toxicity of copper-containing solutions to Daphnia magna. Four LDH clays with different coatings used to alter hydrophobicity were as follows: used: Na(+) montmorillonite, Zn-Al LDH-nitrate, Zn-Al LDH-stearate, and Zn-Al LDH-carbonate. It was determined that coated LDH clays decreased copper toxicity by decreasing bioavailability and that smaller aggregate sizes decreased bioavailability the most. 96 h LC50 values increased by as much as 4.2 times with the treatment of the solutions with 100 mg/L LDH clay. Copper analysis of the clay and solutions indicated that the clays work by decreasing copper bioavailability by way of a binding mechanism. Coated LDH clays hold promise as a small-scale remediation tool or as an innovative tool for toxicity identification and evaluation characterization of metals.


Assuntos
Silicatos de Alumínio/química , Cobre/toxicidade , Recuperação e Remediação Ambiental/métodos , Hidróxidos/química , Poluentes Químicos da Água/toxicidade , Adsorção , Animais , Argila , Cobre/química , Daphnia , Poluentes Químicos da Água/química
12.
J Ind Microbiol Biotechnol ; 40(5): 465-75, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475284

RESUMO

The microbial communities associated with kenaf (Hibiscus cannabinus) plant fibers during retting were determined in an effort to identify possible means of accelerating this process for industrial scale-up. Microbial communities were identified by semiconductor sequencing of 16S rRNA gene amplicons from DNA harvested from plant-surface associated samples and analyzed using an Ion Torrent PGM. The communities were sampled after 96 h from each of three different conditions, including amendments with pond water, sterilized pond water, or with a mixture of pectinolytic bacterial isolates. Additionally, plants from two different sources and having different pretreatment conditions were compared. We report that the best retting communities are dominated by members of the order Clostridiales. These bacteria appear to be naturally associated with the plant material, although slight variations between source materials were found. Additionally, heavy inoculations of pectinolytic bacteria established themselves and in addition their presence facilitated the rapid dominance of the original plant-associated Clostridiales. These data suggest that members of the order Clostridiales dominate the community and are most closely associated with efficient and effective retting. The results further suggest that establishment of the community structure is first driven by the switch to anaerobic conditions, and subsequently by possible competition for nitrogen. These findings reveal important bacterial groups involved in fiber retting, and suggest mechanisms for the manipulation of the community and retting efficiency by modifying nutrient availability.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Hibiscus/microbiologia , Semicondutores , Análise de Sequência de DNA/métodos , Bactérias/classificação , Biodiversidade , Água Doce , Biblioteca Gênica , Pectinas/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA