RESUMO
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Humanos , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/farmacologia , Ciclo Celular , ApoptoseRESUMO
The mechanisms responsible for the pathogenesis and progression of Amyotrophic Lateral Sclerosis (ALS) remain poorly understood, making the diagnosis of ALS challenging. We aimed to find the novel gene biomarkers via computationally analyzing microarray expression studies, in three different cell lineages, namely myotube cells, astrocyte cells and oligodendrocyte cells. Microarray gene expression profiles were obtained and analyzed for three cell types: myotube cell lineage (GSE122261), astrocyte, and oligodendrocyte cell lineage (GSE87385). A comprehensive computational pipeline, tailored explicitly for microarray gene expression profiling studies, was devised to analyze the sample groups, wherein the myotube sample group comprised of six control (GSM3462697, GSM3462698, GSM3462699, GSM3462700, GSM3462701, GSM3462702) & six diseased (GSM3462691, GSM3462692, GSM3462693, GSM3462694, GSM3462695, GSM3462696) samples were considered. Similarly, for the astrocyte sample group two samples each for the control (GSM2330040, GSM2330042) and the diseased (GSM2330039, GSM2330041), and for the oligodendrocyte sample group, 2 control (GSM2330043, GSM2330045) samples and two diseased (GSM2330044, GSM2330046) samples were considered for the current study. The in-depth interaction of these DEGs was studied using MCODE and subjected to preliminary functional analysis using ClueGO/CluePedia plug-in. Qiagen's IPA software was employed for enrichment analysis, which generated the key canonical pathways and a list of potential biomarker molecules specific to each sample group. The preliminary analysis yielded 512 DEGs across all 3-sample groups, wherein 139 DEGs belonged to the myotube sample group, 216 DEGs for the astrocyte sample group, and 157 DEGs for the oligodendrocytes sample group. The data suggests growth hormone signaling and its activity, ErbB signaling pathway, and JAK/STAT signaling pathway are some of the pathways that are significantly dysregulated and play a crucial role in the development and progression of ALS. KISS1R and CSHL1 are potential genes that could act as diagnostic biomarkers in myotube cell types. Also, KRAS, TGFB2, JUN, and SMAD6 genes may be used as prognostic biomarkers to differentiate between early and late-stage ALS-diseased patients.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Transdução de SinaisRESUMO
Objectives: Interactive learning through interprofessional education enhances collaborative practice. This study aims to determine the attitude, perception, and readiness of Omani undergraduate health professions students toward interprofessional education and practice. Methods: A total of 327 Omani undergraduates across different health fields participated in this cross-sectional study. Data was gathered via an online-based survey by using two previously validated and reliable tools: 1) the Student Perceptions of Interprofessional Clinical Education-revised (SPICE-R2) and 2) the Readiness for Interprofessional Education Scale-modified. Data were analysed using descriptive and inferential statistics. Results: The overall mean score of the students' attitude and readiness toward interprofessional education was 56.77 (SD = 5.51). The overall mean score of the students' perception toward interprofessional education was 41.42 (SD = 4.56). The overall mean attitude and readiness score and perception score were higher for the pharmacy students than for the rest of the students; however, no statistically significant difference was noted in the scores of attitude and readiness (p > .05), and perception (p > .05). Conclusions: Overall, the study revealed that all the health professionals in Oman, irrespective of the profession, disclosed a favourable attitude, a high state of readiness, and a positive perception toward interprofessional education and practice. Furthermore, all the health professionals considered teamwork and collaboration to be essential for better quality care and practice.
RESUMO
Agathisflavone is a flavonoid with anti-neuroinflammatory and myelinogenic properties, being also capable to induce neurogenesis. This study evaluated the therapeutic effects of agathisflavone-both as a pharmacological therapy administered in vivo and as an in vitro pre-treatment aiming to enhance rat mesenchymal stem cells (r)MSCs properties-in a rat model of acute spinal cord injury (SCI). Adult male Wistar rats (n = 6/group) underwent acute SCI with an F-2 Fogarty catheter and after 4 h were treated daily with agathisflavone (10 mg/kg ip, for 7 days), or administered with a single i.v. dose of 1 × 106 rMSCs either unstimulated cells (control) or pretreated with agathisflavone (1 µM, every 2 days, for 21 days in vitro). Control rats (n = 6/group) were treated with a single dose methylprednisolone (MP, 60 mg/kg ip). BBB scale was used to evaluate the motor functions of the animals; after 7 days of treatment, the SCI area was analyzed after H&E staining, and RT-qPCR was performed to analyze the expression of neurotrophins and arginase. Treatment with agathisflavone alone or with of 21-day agathisflavone-treated rMSCs was able to protect the injured spinal cord tissue, being associated with increased expression of NGF, GDNF and arginase, and reduced macrophage infiltrate. In addition, treatment of animals with agathisflavone alone was able to protect injured spinal cord tissue and to increase expression of neurotrophins, modulating the inflammatory response. These results support a pro-regenerative effect of agathisflavone that holds developmental potential for clinical applications in the future.
RESUMO
Recent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1ß production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats. We demonstrated aminochrome (25⯵M, for 24â¯h) induced reduction of GFAP expression, reduction of NGF and GDNF mRNA levels, morphological changes in Iba1+ cells, and increase of both TNF-α, IL-1ß mRNA and protein levels. Moreover, aminochrome (25⯵M, for 48â¯h) induced morphological changes in the edge of slices and reduction of TH expression. These results demonstrate neuroinflammation, as well as negative regulation of neurotrophic factors (GDNF and NGF), may be involved in aminochrome-induced neurodegeneration, and they contribute to a better understanding of PD pathogenesis.