Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(3): 523-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238586

RESUMO

Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.


Assuntos
Proteínas de Ligação a DNA , Chaperonas de Histonas , Animais , Humanos , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 51(11): 5743-5754, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37216589

RESUMO

ANKLE1 is a nuclease that provides a final opportunity to process unresolved junctions in DNA that would otherwise create chromosomal linkages blocking cell division. It is a GIY-YIG nuclease. We have expressed an active domain of human ANKLE1 containing the GIY-YIG nuclease domain in bacteria, that is monomeric in solution and when bound to a DNA Y-junction, and unilaterally cleaves a cruciform junction. Using an AlphaFold model of the enzyme we identify the key active residues, and show that mutation of each leads to impairment of activity. There are two components in the catalytic mechanism. Cleavage rate is pH dependent, corresponding to a pKa of 6.9, suggesting an involvement of the conserved histidine in proton transfer. The reaction rate depends on the nature of the divalent cation, likely bound by glutamate and asparagine side chains, and is log-linear with the metal ion pKa. We propose that the reaction is subject to general acid-base catalysis, using a combination of tyrosine and histidine acting as general base and water directly coordinated to the metal ion as general acid. The reaction is temperature dependent; activation energy Ea = 37 kcal mol-1, suggesting that cleavage is coupled to opening of DNA in the transition state.


Assuntos
DNA , Endonucleases , Humanos , DNA/química , Endonucleases/metabolismo , Histidina/genética , Mutação
3.
Nat Commun ; 13(1): 5921, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207294

RESUMO

Resolution of Holliday junctions is a critical intermediate step of homologous recombination in which junctions are processed by junction-resolving endonucleases. Although binding and cleavage are well understood, the question remains how the enzymes locate their substrate within long duplex DNA. Here we track fluorescent dimers of endonuclease I on DNA, presenting the complete single-molecule reaction trajectory for a junction-resolving enzyme finding and cleaving a Holliday junction. We show that the enzyme binds remotely to dsDNA and then undergoes 1D diffusion. Upon encountering a four-way junction, a catalytically-impaired mutant remains bound at that point. An active enzyme, however, cleaves the junction after a few seconds. Quantitative analysis provides a comprehensive description of the facilitated diffusion mechanism. We show that the eukaryotic junction-resolving enzyme GEN1 also undergoes facilitated diffusion on dsDNA until it becomes located at a junction, so that the general resolution trajectory is probably applicable to many junction resolving enzymes.


Assuntos
DNA Cruciforme , DNA , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Resolvases de Junção Holliday/metabolismo , Conformação de Ácido Nucleico
4.
Nat Chem Biol ; 15(3): 269-275, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664685

RESUMO

Holliday junction (HJ) resolution by resolving enzymes is essential for chromosome segregation and recombination-mediated DNA repair. HJs undergo two types of structural dynamics that determine the outcome of recombination: conformer exchange between two isoforms and branch migration. However, it is unknown how the preferred branch point and conformer are achieved between enzyme binding and HJ resolution given the extensive binding interactions seen in static crystal structures. Single-molecule fluorescence resonance energy transfer analysis of resolving enzymes from bacteriophages (T7 endonuclease I), bacteria (RuvC), fungi (GEN1) and humans (hMus81-Eme1) showed that both types of HJ dynamics still occur after enzyme binding. These dimeric enzymes use their multivalent interactions to achieve this, going through a partially dissociated intermediate in which the HJ undergoes nearly unencumbered dynamics. This evolutionarily conserved property of HJ resolving enzymes provides previously unappreciated insight on how junction resolution, conformer exchange and branch migration may be coordinated.


Assuntos
DNA Cruciforme/metabolismo , DNA Cruciforme/fisiologia , Resolvases de Junção Holliday/metabolismo , Animais , Proteínas de Arabidopsis , Segregação de Cromossomos/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Desoxirribonuclease I , Endodesoxirribonucleases , Endonucleases , Proteínas de Escherichia coli , Transferência Ressonante de Energia de Fluorescência/métodos , Resolvases de Junção Holliday/fisiologia , Humanos , Ligação Proteica , Recombinação Genética/genética , Imagem Individual de Molécula/métodos , Especificidade por Substrato
5.
Nucleic Acids Res ; 46(20): 11089-11098, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30247722

RESUMO

GEN1 is a member of the FEN/EXO family of structure-selective nucleases that cleave 1 nt 3' to a variety of branchpoints. For each, the H2TH motif binds a monovalent ion and plays an important role in binding one helical arm of the substrates. We investigate here the importance of this metal ion on substrate specificity and GEN1 structure. In the presence of K+ ions the substrate specificity is wider than in Na+, yet four-way junctions remain the preferred substrate. In a combination of K+ and Mg2+ second strand cleavage is accelerated 17-fold, ensuring bilateral cleavage of the junction. We have solved crystal structures of Chaetomium thermophilum GEN1 with Cs+, K+ and Na+ bound. With bound Cs+ the loop of the H2TH motif extends toward the active site so that D199 coordinates a Mg2+, buttressed by an interaction of the adjacent Y200. With the lighter ions bound the H2TH loop changes conformation and retracts away from the active site. We hypothesize this conformational change might play a role in second strand cleavage acceleration.


Assuntos
Chaetomium/enzimologia , DNA Fúngico/metabolismo , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Domínios e Motivos de Interação entre Proteínas , Domínio Catalítico/genética , Chaetomium/genética , Chaetomium/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Clivagem do DNA , DNA Cruciforme/metabolismo , Escherichia coli , Resolvases de Junção Holliday/genética , Íons/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Especificidade por Substrato/genética
6.
Methods Enzymol ; 600: 543-568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458774

RESUMO

Four-way Holliday junctions in DNA are the central intermediates of genetic recombination and must be processed into regular duplex species. One mechanism for achieving this is called resolution, brought about by structure-selective nucleases. GEN1 is an important junction-resolving enzyme in eukaryotic cells, a member of the FEN1/EXO1 superfamily of nucleases. While human GEN1 is difficult to work with because of aggregation, orthologs from thermophilic fungi have been identified using bioinformatics and have proved to have excellent properties. Here, the expression and purification of this enzyme from Chaetomium thermophilum is described, together with the means of investigating its biochemical properties. The enzyme is quite similar to junction-resolving enzymes from lower organisms, binding to junctions in dimeric form, introducing symmetrical bilateral cleavages, the second of which is accelerated to promote productive resolution. Crystallization of C. thermophilum GEN1 is described, and the structure of a DNA-product complex. Juxtaposition of complexes in the crystal lattice suggests how the structure of a dimeric enzyme with an intact junction is organized.


Assuntos
Chaetomium/genética , DNA Cruciforme/química , Ensaios Enzimáticos/métodos , Proteínas Fúngicas/química , Resolvases de Junção Holliday/química , Chaetomium/metabolismo , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Ensaios Enzimáticos/instrumentação , Proteínas Fúngicas/isolamento & purificação , Resolvases de Junção Holliday/isolamento & purificação , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
7.
Biochemistry ; 55(30): 4166-72, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387136

RESUMO

The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7-10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2-12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography.


Assuntos
Bacteriófago T7/enzimologia , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Bacteriófago T7/genética , Desoxirribonuclease I/genética , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética
8.
Cell Rep ; 13(11): 2565-2575, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26686639

RESUMO

We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.


Assuntos
DNA/metabolismo , Proteínas Fúngicas/metabolismo , Resolvases de Junção Holliday/metabolismo , Sítios de Ligação , Domínio Catalítico , Chaetomium/genética , Chaetomium/metabolismo , Cristalografia por Raios X , DNA/química , Proteínas Fúngicas/química , Resolvases de Junção Holliday/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
9.
J Mol Biol ; 426(24): 3946-3959, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25315822

RESUMO

Processing of Holliday junctions is essential in recombination. We have identified the gene for the junction-resolving enzyme GEN1 from the thermophilic fungus Chaetomium thermophilum and expressed the N-terminal 487-amino-acid section. The protein is a nuclease that is highly selective for four-way DNA junctions, cleaving 1nt 3' to the point of strand exchange on two strands symmetrically disposed about a diagonal axis. CtGEN1 binds to DNA junctions as a discrete homodimer with nanomolar affinity. Analysis of the kinetics of cruciform cleavage shows that cleavage of the second strand occurs an order of magnitude faster than the first cleavage so as to generate a productive resolution event. All these properties are closely similar to those described for bacterial, phage and mitochondrial junction-resolving enzymes. CtGEN1 is also similar in properties to the human enzyme but lacks the problems with aggregation that currently prevent detailed analysis of the latter protein. CtGEN1 is thus an excellent enzyme with which to engage in biophysical and structural analysis of eukaryotic GEN1.


Assuntos
Chaetomium/enzimologia , DNA Cruciforme/metabolismo , Proteínas Fúngicas/metabolismo , Resolvases de Junção Holliday/metabolismo , Algoritmos , Sequência de Aminoácidos , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Sequência de Bases , Ligação Competitiva , Chaetomium/genética , DNA Cruciforme/química , DNA Cruciforme/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Resolvases de Junção Holliday/classificação , Resolvases de Junção Holliday/genética , Hidrólise , Cinética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Filogenia , Ligação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos
10.
Cell Rep ; 8(1): 84-93, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24981866

RESUMO

FAN1 is a structure-selective DNA repair nuclease with 5' flap endonuclease activity, involved in the repair of interstrand DNA crosslinks. It is the only eukaryotic protein with a virus-type replication-repair nuclease ("VRR-Nuc") "module" that commonly occurs as a standalone domain in many bacteria and viruses. Crystal structures of three representatives show that they structurally resemble Holliday junction resolvases (HJRs), are dimeric in solution, and are able to cleave symmetric four-way junctions. In contrast, FAN1 orthologs are monomeric and cleave 5' flap structures in vitro, but not Holliday junctions. Modeling of the VRR-Nuc domain of FAN1 reveals that it has an insertion, which packs against the dimerization interface observed in the structures of the viral/bacterial VRR-Nuc proteins. We propose that these additional structural elements in FAN1 prevent dimerization and bias specificity toward flap structures.


Assuntos
Proteínas de Bactérias/química , DNA Cruciforme/metabolismo , Endodesoxirribonucleases/química , Exodesoxirribonucleases/química , Resolvases de Junção Holliday/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Resolvases de Junção Holliday/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Enzimas Multifuncionais , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia
11.
Mol Cell ; 52(2): 221-33, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24076219

RESUMO

Holliday junctions (HJs) are X-shaped DNA structures that arise during homologous recombination, which must be removed to enable chromosome segregation. The SLX1 and MUS81-EME1 nucleases can both process HJs in vitro, and they bind in close proximity on the SLX4 scaffold, hinting at possible cooperation. However, the cellular roles of mammalian SLX1 are not yet known. Here, we use mouse genetics and structure function analysis to investigate SLX1 function. Disrupting the murine Slx1 and Slx4 genes revealed that they are essential for HJ resolution in mitotic cells. Moreover, SLX1 and MUS81-EME1 act together to resolve HJs in a manner that requires tethering to SLX4. We also show that SLX1, like MUS81-EME1, is required for repair of DNA interstrand crosslinks, but this role appears to be independent of HJ cleavage, at least in mouse cells. These findings shed light on HJ resolution in mammals and on maintenance of genome stability.


Assuntos
Reparo do DNA , DNA Cruciforme , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Endodesoxirribonucleases/genética , Endonucleases/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Dados de Sequência Molecular , Ligação Proteica , Interferência de RNA , Recombinases/genética , Recombinases/metabolismo , Homologia de Sequência de Aminoácidos
12.
J Mol Biol ; 425(2): 395-410, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23207296

RESUMO

T7 endonuclease I is a dimeric nuclease that is selective for four-way DNA junctions. Previous crystallographic studies have found that the N-terminal 16 amino acids are not visible, neither in the presence nor in the absence of DNA. We have now investigated the effect of deleting the N-terminus completely or partially. N-terminal deleted enzyme binds more tightly to DNA junctions but cleaves them more slowly. While deletion of the N-terminus does not measurably affect the global structure of the complex, the presence of the peptide is required to generate a local opening at the center of the DNA junction that is observed by 2-aminopurine fluorescence. Complete deletion of the peptide leads to a cleavage rate that is 3 orders of magnitude slower and an activation enthalpy that is 3-fold higher, suggesting that the most important interaction of the peptide is with the reaction transition state. Taken together, these data point to an important role of the N-terminus in generating a central opening of the junction that is required for the cleavage reaction to proceed properly. In the absence of this, we find that a cruciform junction is no longer subject to bilateral cleavage, but instead, just one strand is cleaved. Thus, the N-terminus is required for a productive resolution of the junction.


Assuntos
Bacteriófago T7/enzimologia , DNA Bacteriano/metabolismo , Desoxirribonuclease I/metabolismo , Fragmentos de Peptídeos/metabolismo , Sítios de Ligação , Primers do DNA/química , DNA Bacteriano/química , Desoxirribonuclease I/química , Desoxirribonuclease I/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica
13.
PLoS Genet ; 6(7): e1001025, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20661466

RESUMO

DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR), which can involve Holliday junction (HJ) intermediates that are ultimately resolved by nucleolytic enzymes. An N-terminal fragment of human GEN1 has recently been shown to act as a Holliday junction resolvase, but little is known about the role of GEN-1 in vivo. Holliday junction resolution signifies the completion of DNA repair, a step that may be coupled to signaling proteins that regulate cell cycle progression in response to DNA damage. Using forward genetic approaches, we identified a Caenorhabditis elegans dual function DNA double-strand break repair and DNA damage signaling protein orthologous to the human GEN1 Holliday junction resolving enzyme. GEN-1 has biochemical activities related to the human enzyme and facilitates repair of DNA double-strand breaks, but is not essential for DNA double-strand break repair during meiotic recombination. Mutational analysis reveals that the DNA damage-signaling function of GEN-1 is separable from its role in DNA repair. GEN-1 promotes germ cell cycle arrest and apoptosis via a pathway that acts in parallel to the canonical DNA damage response pathway mediated by RPA loading, CHK1 activation, and CEP-1/p53-mediated apoptosis induction. Furthermore, GEN-1 acts redundantly with the 9-1-1 complex to ensure genome stability. Our study suggests that GEN-1 might act as a dual function Holliday junction resolvase that may coordinate DNA damage signaling with a late step in DNA double-strand break repair.


Assuntos
Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Resolvases de Junção Holliday/fisiologia , Animais , Apoptose , Ciclo Celular , Instabilidade Genômica , Células Germinativas , Resolvases de Junção Holliday/genética , Meiose , Transdução de Sinais/genética
14.
Cell ; 142(1): 65-76, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603015

RESUMO

DNA interstrand crosslinks (ICLs) are highly toxic because they block the progression of replisomes. The Fanconi Anemia (FA) proteins, encoded by genes that are mutated in FA, are important for repair of ICLs. The FA core complex catalyzes the monoubiquitination of FANCD2, and this event is essential for several steps of ICL repair. However, how monoubiquitination of FANCD2 promotes ICL repair at the molecular level is unknown. Here, we describe a highly conserved protein, KIAA1018/MTMR15/FAN1, that interacts with, and is recruited to sites of DNA damage by, the monoubiquitinated form of FANCD2. FAN1 exhibits endonuclease activity toward 5' flaps and has 5' exonuclease activity, and these activities are mediated by an ancient VRR_nuc domain. Depletion of FAN1 from human cells causes hypersensitivity to ICLs, defects in ICL repair, and genome instability. These data at least partly explain how ubiquitination of FANCD2 promotes DNA repair.


Assuntos
Reparo do DNA , Exodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose , Proteína BRCA2/metabolismo , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA/efeitos dos fármacos , Endodesoxirribonucleases , Endonucleases/química , Endonucleases/metabolismo , Exodesoxirribonucleases/química , Humanos , Dados de Sequência Molecular , Enzimas Multifuncionais , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ubiquitinação
15.
Mol Cell ; 35(1): 116-27, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19595721

RESUMO

Budding yeast Slx4 interacts with the structure-specific endonuclease Slx1 to ensure completion of ribosomal DNA replication. Slx4 also interacts with the Rad1-Rad10 endonuclease to control cleavage of 3' flaps during repair of double-strand breaks (DSBs). Here we describe the identification of human SLX4, a scaffold for DNA repair nucleases XPF-ERCC1, MUS81-EME1, and SLX1. SLX4 immunoprecipitates show SLX1-dependent nuclease activity toward Holliday junctions and MUS81-dependent activity toward other branched DNA structures. Furthermore, SLX4 enhances the nuclease activity of SLX1, MUS81, and XPF. Consistent with a role in processing recombination intermediates, cells depleted of SLX4 are hypersensitive to genotoxins that cause DSBs and show defects in the resolution of interstrand crosslink-induced DSBs. Depletion of SLX4 causes a decrease in DSB-induced homologous recombination. These data show that SLX4 is a regulator of structure-specific nucleases and that SLX4 and SLX1 are important regulators of genome stability in human cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endonucleases/metabolismo , Recombinases/metabolismo , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Ligação Proteica , RNA Interferente Pequeno/genética , Recombinases/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
16.
EMBO J ; 28(6): 641-51, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19197240

RESUMO

The ability of the telomeric DNA-binding protein, TRF2, to stimulate t-loop formation while preventing t-loop deletion is believed to be crucial to maintain telomere integrity in mammals. However, little is known on the molecular mechanisms behind these properties of TRF2. In this report, we show that TRF2 greatly increases the rate of Holliday junction (HJ) formation and blocks the cleavage by various types of HJ resolving activities, including the newly identified human GEN1 protein. By using potassium permanganate probing and differential scanning calorimetry, we reveal that the basic domain of TRF2 induces structural changes to the junction. We propose that TRF2 contributes to t-loop stabilisation by stimulating HJ formation and by preventing resolvase cleavage. These findings provide novel insights into the interplay between telomere protection and homologous recombination and suggest a general model in which TRF2 maintains telomere integrity by controlling the turnover of HJ at t-loops and at regressed replication forks.


Assuntos
DNA Cruciforme/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Bactérias/enzimologia , Pareamento de Bases , Sequência de Bases , Bioensaio , Histidina/metabolismo , Resolvases de Junção Holliday/metabolismo , Humanos , Dados de Sequência Molecular , Permanganato de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Recombinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteína 2 de Ligação a Repetições Teloméricas/química
17.
Curr Opin Struct Biol ; 18(1): 86-95, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18160275

RESUMO

Junction-resolving enzymes are nucleases that exhibit structural selectivity for the four-way (Holliday) junction in DNA. In general, these enzymes both recognize and distort the structure of the junction. New insight into the molecular recognition processes has been provided by two recent co-crystal structures of resolving enzymes bound to four-way DNA junctions in highly contrasting ways. T4 endonuclease VII binds the junction in an open conformation to an approximately flat binding surface whereas T7 endonuclease I envelops the junction, which retains a much more three-dimensional structure. Both proteins make contacts with the DNA backbone over an extensive area in order to generate structural specificity. The comparison highlights the versatility of Holliday junction resolution, and extracts some general principles of recognition.


Assuntos
DNA Cruciforme/química , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Animais , Sítios de Ligação , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , DNA Cruciforme/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica
18.
Nature ; 449(7162): 621-4, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17873858

RESUMO

The four-way (Holliday) DNA junction is the central intermediate in homologous recombination, a ubiquitous process that is important in DNA repair and generation of genetic diversity. The penultimate stage of recombination requires resolution of the DNA junction into nicked-duplex species by the action of a junction-resolving enzyme, examples of which have been identified in a wide variety of organisms. These enzymes are nucleases that are highly selective for the structure of branched DNA. The mechanism of this selectivity has, however, been unclear in the absence of structural data. Here we present the crystal structure of the junction-resolving enzyme phage T7 endonuclease I in complex with a synthetic four-way DNA junction. Although the enzyme is structure-selective, significant induced fit occurs in the interaction, with changes in the structure of both the protein and the junction. The dimeric enzyme presents two binding channels that contact the backbones of the junction's helical arms over seven nucleotides. These interactions effectively measure the relative orientations and positions of the arms of the junction, thereby ensuring that binding is selective for branched DNA that can achieve this geometry.


Assuntos
Bacteriófago T7/enzimologia , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Cruciforme/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica
19.
J Mol Biol ; 359(5): 1261-76, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16690083

RESUMO

Resolving enzymes bind highly selectively to four-way DNA junctions, but the mechanism of this structural specificity is poorly understood. In this study, we have explored the role of interactions between the dimeric enzyme and the helical arms of the junction, using junctions with either shortened arms, or circular permutation of arms. We find that DNA-protein contacts in the arms containing the 5' ends of the continuous strands are very important, conferring a significant level of sequence discrimination upon both the choice of conformer and the order of strand cleavage. We have exploited these properties to obtain hydroxyl radical footprinting data on endonuclease I-junction complexes that are not complicated by the presence of alternative conformers, with results that are in good agreement with the arm permutation and shortening experiments. Substitution of phosphate groups at the center of the junction reveals the importance of electrostatic interactions at the point of strand exchange in the complex. Our data show that the form of the complex between endonuclease I and a DNA junction depends on the core of the junction and on interactions with the first six base-pairs of the arms containing the 5' ends of the continuous strands.


Assuntos
Bacteriófago T7/enzimologia , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Desoxirribonuclease I/metabolismo , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Sequência de Bases , Pegada de DNA , DNA Circular/química , DNA Cruciforme/genética , Desoxirribonuclease I/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Compostos Organofosforados/metabolismo , Ligação Proteica , Especificidade por Substrato
20.
Biochemistry ; 45(12): 3934-42, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16548520

RESUMO

The chemical mechanism of phosphodiester bond hydrolysis catalyzed by a junction-resolving enzyme has been investigated. Endonuclease I of phage T7 is a member of the nuclease superfamily of proteins that include many restriction enzymes, and the structure of the active site is very similar to that of BglI in particular. It contains three acidic amino acids that coordinate two divalent metal ions. Using mass spectrometry we have shown that endonuclease I catalyzes the breakage of the P-O3' bond, in common with restriction enzymes. We have found that the pH dependence of the hydrolysis reaction is log-linear, with a gradient of 0.9. Substitution of the scissile phosphate by an electrically neutral methylphosphonate significantly impairs the rate of bond cleavage. However, the introduction of chirally pure methylphosphonate groups shows that the effect of substitution of the proS oxygen atom is much greater than that for the proR. This is consistent with our current model of the structure of the DNA bound in the active site of endonuclease I, where the proS oxygen atom is coordinated directly to both metal ions as it is in BglI. The activity is also very sensitive to repositioning of the carboxylate groups of Asp 55 and Glu 65 in the active site, although some restoration of activity in endonuclease I E65D was observed in the presence of Mn2+ ions. A mechanism of hydrolysis consistent with all of these data is proposed.


Assuntos
DNA/química , Desoxirribonuclease I/química , Sequência de Bases , Primers do DNA , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Ésteres , Concentração de Íons de Hidrogênio , Hidrólise , Mutagênese Sítio-Dirigida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA