Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(10)2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39457700

RESUMO

Background: Brain tumors are highly complex, making their detection and classification a significant challenge in modern medical diagnostics. The accurate segmentation and classification of brain tumors from MRI images are crucial for effective treatment planning. This study aims to develop an advanced neural network architecture that addresses these challenges. Methods: We propose L-net, a novel architecture combining U-net for tumor boundary segmentation and a convolutional neural network (CNN) for tumor classification. These two units are coupled such a way that the CNN classifies the MRI images based on the features extracted by the U-net while segmenting the tumor, instead of relying on the original input images. The model is trained on a dataset of 3064 high-resolution MRI images, encompassing gliomas, meningiomas, and pituitary tumors, ensuring robust performance across different tumor types. Results: L-net achieved a classification accuracy of up to 99.6%, surpassing existing models in both segmentation and classification tasks. The model demonstrated effectiveness even with lower image resolutions, making it suitable for diverse clinical settings. Conclusions: The proposed L-net model provides an accurate and unified approach to brain tumor segmentation and classification. Its enhanced performance contributes to more reliable and precise diagnosis, supporting early detection and treatment in clinical applications.

2.
Comput Biol Med ; 182: 109167, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326266

RESUMO

For individuals diagnosed with diabetes mellitus, it is crucial to keep a record of the carbohydrates consumed during meals, as this should be done at least three times daily, amounting to an average of six meals. Unfortunately, many individuals tend to overlook this essential task. For those who use an artificial pancreas, carbohydrate intake proves to be a critical factor, as it can activate the insulin pump in the artificial pancreas to deliver insulin to the body. To address this need, we have developed personalized deep learning model that can accurately detect carbohydrate intake with a high degree of accuracy. Our study employed a publicly available dataset gathered by an Inertial Measurement Unit (IMU), which included accelerometer and gyroscope data. The data was sampled at a rate of 15 Hz, necessitating preprocessing. For our tailored to the patient model, we utilized a recurrent network comprising Long short-term memory (LSTM) layers. Our findings revealed a median F1 score of 0.99, indicating a high level of accuracy. Additionally, the confusion matrix displayed a difference of only 6 s, further validating the model's accuracy. Therefore, we can confidently assert that our model architecture exhibits a high degree of accuracy. Our model performed well above 90% on the dataset, with most results between 98%-99%. The recurrent networks improved the problem-solving capabilities significantly, though some outliers remained. The model's average prediction latency was 5.5 s, suggesting that later meal predictions result in extended meal progress predictions. The dataset's limitation of mostly single-day data points raises questions about multi-day performance, which could be explored by collecting multi-day data, including night periods. Future enhancements might involve transformer networks and shorter time windows to improve model responsiveness and accuracy. Therefore, we can confidently assert that our model exhibits a high degree of accuracy.

3.
Biomedicines ; 12(9)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39335656

RESUMO

Background/Objectives: Managing blood glucose levels effectively remains a significant challenge for individuals with diabetes. Traditional methods often lack the flexibility needed for personalized care. This study explores the potential of reinforcement learning-based approaches, which mimic human learning and adapt strategies through ongoing interactions, in creating dynamic and personalized blood glucose management plans. Methods: We developed a mathematical model specifically for patients with type IVP diabetes, validated with data from 10 patients and 17 key parameters. The model includes continuous glucose monitoring (CGM) noise and random carbohydrate intake to simulate real-life conditions. A closed-loop system was designed to enable the application of reinforcement learning algorithms. Results: By implementing a Policy Optimization (PPO) branch, we achieved an average Time in Range (TIR) metric of 73%, indicating improved blood glucose control. Conclusions: This study presents a personalized insulin therapy solution using reinforcement learning. Our closed-loop model offers a promising approach for improving blood glucose regulation, with potential applications in personalized diabetes management.

4.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676028

RESUMO

Diabetes mellitus (DM) is a persistent metabolic disorder associated with the hormone insulin. The two main types of DM are type 1 (T1DM) and type 2 (T2DM). Physical activity plays a crucial role in the therapy of diabetes, benefiting both types of patients. The detection, recognition, and subsequent classification of physical activity based on type and intensity are integral components of DM treatment. The continuous glucose monitoring system (CGMS) signal provides the blood glucose (BG) level, and the combination of CGMS and heart rate (HR) signals are potential targets for detecting relevant physical activity from the BG variation point of view. The main objective of the present research is the developing of an artificial intelligence (AI) algorithm capable of detecting physical activity using these signals. Using multiple recurrent models, the best-achieved performance of the different classifiers is a 0.99 area under the receiver operating characteristic curve. The application of recurrent neural networks (RNNs) is shown to be a powerful and efficient solution for accurate detection and analysis of physical activity in patients with DM. This approach has great potential to improve our understanding of individual activity patterns, thus contributing to a more personalized and effective management of DM.


Assuntos
Algoritmos , Glicemia , Exercício Físico , Frequência Cardíaca , Redes Neurais de Computação , Humanos , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Glicemia/análise , Automonitorização da Glicemia/métodos , Masculino , Diabetes Mellitus/diagnóstico , Feminino , Adulto , Curva ROC , Diabetes Mellitus Tipo 2/diagnóstico , Inteligência Artificial , Diabetes Mellitus Tipo 1/fisiopatologia , Pessoa de Meia-Idade
5.
Sensors (Basel) ; 22(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366265

RESUMO

Non-coordinated physical activity may lead to hypoglycemia, which is a dangerous condition for diabetic people. Decision support systems related to type 1 diabetes mellitus (T1DM) still lack the capability of automated therapy modification by recognizing and categorizing the physical activity. Further, this desired adaptive therapy should be achieved without increasing the administrative load, which is already high for the diabetic community. These requirements can be satisfied by using artificial intelligence-based solutions, signals collected by wearable devices, and relying on the already available data sources, such as continuous glucose monitoring systems. In this work, we focus on the detection of physical activity by using a continuous glucose monitoring system and a wearable sensor providing the heart rate-the latter is accessible even in the cheapest wearables. Our results show that the detection of physical activity is possible based on these data sources, even if only low-complexity artificial intelligence models are deployed. In general, our models achieved approximately 90% accuracy in the detection of physical activity.


Assuntos
Automonitorização da Glicemia , Glicemia , Humanos , Automonitorização da Glicemia/métodos , Frequência Cardíaca , Inteligência Artificial , Aprendizado de Máquina , Exercício Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA