Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prostate ; 83(7): 670-677, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36851864

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) is the standard of care for prostate cancer treatment. Studies suggest that patients with testosterone levels below 0.7 nM have a longer time to castration resistance. Using the most accurate testosterone measurement method, namely mass spectrometry (MS), we sought to determine if a lower testosterone level under ADT could be associated with longer time to castration resistance. METHODS: This retrospective study included 138 prostate cancer patients undergoing noncurative continuous ADT for which we had access to testosterone measurements assessed by MS. For 108 samples, paired immunoassays (IA) testosterone measurement was available. Primary outcome was time to castration-resistant prostate cancer (CRPC). The Contal and O'Quigley method was used to determine the optimal testosterone castration cut-off point considering the outcome and time-to-event variables. Relationship between testosterone levels assessed either by IA or MS and time to CRPC was evaluated using Cox regression. RESULTS: Mean testosterone level was 0.370 nM by IA and 0.275 nM as assessed by MS. The optimal testosterone cut-off point identified to predict time to CRPC was of 0.705 nM for IA and of 0.270 nM for MS. While no significant difference for time to CRPC was found between patients showing IA testosterone level ≥0.705 nM versus <0.705 nM (hazard ratio [HR]: 1.579; 95% confidence interval [CI]: 0.908-2.745), patients with MS testosterone ≥0.270 nM had an increased risk of progression to CRPC compared to MS testosterone <0.270 nM in univariate (HR: 1.717; 95% CI: 1.160-2.541) and multivariate analysis (HR: 1.662; 95% CI: 1.043-2.648). CONCLUSIONS: The higher sensitivity of MS testosterone measurement methods allows the identification of a lower castration threshold and leads to early identification of patients more likely to progress to CRPC. These patients would likely benefit from treatment intensification by androgen receptor axis-targeted therapies to delay disease progression.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Testosterona , Antagonistas de Androgênios/uso terapêutico , Androgênios , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Estudos Retrospectivos , Orquiectomia
2.
Endocr Connect ; 8(2): 132-140, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673630

RESUMO

Failure to suppress testosterone below 0.7 nM in castrated prostate cancer patients is associated with poor clinical outcomes. Testosterone levels in castrated patients are therefore routinely measured. Although mass spectrometry is the gold standard used to measure testosterone, most hospitals use an immunoassay method. In this study, we sought to evaluate the accuracy of an immunoassay method to measure castrate testosterone levels, with mass spectrometry as the reference standard. We retrospectively evaluated a cohort of 435 serum samples retrieved from castrated prostate cancer patients from April to September 2017. No follow-up of clinical outcomes was performed. Serum testosterone levels were measured in the same sample using liquid chromatography coupled with tandem mass spectrometry and electrochemiluminescent immunoassay methods. The mean testosterone levels were significantly higher with immunoassay than with mass spectrometry (0.672 ± 0.359 vs 0.461 ± 0.541 nM; P < 0.0001). Half of the samples with testosterone ≥0.7 nM assessed by immunoassay were measured <0.7 nM using mass spectrometry. However, we observed that only 2.95% of the samples with testosterone <0.7 nM measured by immunoassay were quantified ≥0.7 nM using mass spectrometry. The percentage of serum samples experiencing testosterone breakthrough at >0.7 nM was significantly higher with immunoassay (22.1%) than with mass spectrometry (13.1%; P < 0.0001). Quantitative measurement of serum testosterone levels >0.7 nM by immunoassay can result in an inaccurately identified castration status. Suboptimal testosterone levels in castrated patients should be confirmed by either mass spectrometry or an immunoassay method validated at low testosterone levels and interpreted with caution before any changes are made to treatment management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA