Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 503(4): 3017-3022, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30143261

RESUMO

Kinetic stability of proteins determines their susceptibility to irreversibly unfold in a time-dependent process, and therefore its half-life. A residue displacement analysis of temperature-induced unfolding molecular dynamics simulations was recently employed to define the thermal flexibility of proteins. This property was found to be correlated with the activation energy barrier (Eact) separating the native from the transition state in the denaturation process. The Eact was determined from the application of a two-state irreversible model to temperature unfolding experiments using differential scanning calorimetry (DSC). The contribution of each residue to the thermal flexibility of proteins is used here to propose multiple mutations in triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), two parasites closely related by evolution. These two enzymes, taken as model systems, have practically identical structure but large differences in their kinetic stability. We constructed two functional TIM variants with more than twice and less than half the activation energy of their respective wild-type reference structures. The results show that the proposed strategy is able to identify the crucial residues for the kinetic stability in these enzymes. As it occurs with other protein properties reflecting their complex behavior, kinetic stability appears to be the consequence of an extensive network of inter-residue interactions, acting in a concerted manner. The proposed strategy to design variants can be used with other proteins, to increase or decrease their functional half-life.


Assuntos
Engenharia de Proteínas/métodos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Estabilidade Enzimática , Cinética , Modelos Moleculares , Mutação , Desnaturação Proteica , Desdobramento de Proteína , Temperatura , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
2.
PLoS One ; 13(1): e0189525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342154

RESUMO

Proteins with great sequence similarity usually have similar structure, function and other physicochemical properties. But in many cases, one or more of the physicochemical or functional characteristics differ, sometimes very considerably, among these homologous proteins. To better understand how critical amino acids determine quantitative properties of function in proteins, the responsible residues must be located and identified. This can be difficult to achieve, particularly in cases where multiple amino acids are involved. In this work, two triosephosphate isomerases with very high similarity from two related human parasites were used to address one such problem. We demonstrate that a seventy-fold difference in the reactivity of an interface cysteine to the sulfhydryl reagent methylmethane sulfonate in these two enzymes depends on three amino acids located far away from this critical residue and which could not have been predicted using other current methods. Starting from previous observations with chimeric proteins involving these two triosephosphate isomerases, we developed a strategy involving additive mutant enzymes and selected site directed mutants to locate and identify the three amino acids. These three residues seem to induce changes in the interface cysteine in reactivity by increasing (or decreasing) its apparent pKa. Some enzymes with four to seven mutations also exhibited altered reactivity. This study completes a strategy for identifying key residues in the sequences of proteins that can have applications in future protein structure-function studies.


Assuntos
Aminoácidos/química , Cisteína/química , Reagentes de Sulfidrila/química , Triose-Fosfato Isomerase/química , Trypanosoma/enzimologia , Sequência de Aminoácidos , Aminoácidos/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Triose-Fosfato Isomerase/genética
3.
ChemMedChem ; 11(12): 1328-38, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-26492824

RESUMO

Triosephosphate isomerase (TIM) is an essential Trypanosoma cruzi enzyme and one of the few validated drug targets for Chagas disease. The known inhibitors of this enzyme behave poorly or have low activity in the parasite. In this work, we used symmetrical diarylideneketones derived from structures with trypanosomicidal activity. We obtained an enzymatic inhibitor with an IC50 value of 86 nm without inhibition effects on the mammalian enzyme. These molecules also affected cruzipain, another essential proteolytic enzyme of the parasite. This dual activity is important to avoid resistance problems. The compounds were studied in vitro against the epimastigote form of the parasite, and nonspecific toxicity to mammalian cells was also evaluated. As a proof of concept, three of the best derivatives were also assayed in vivo. Some of these derivatives showed higher in vitro trypanosomicidal activity than the reference drugs and were effective in protecting infected mice. In addition, these molecules could be obtained by a simple and economic green synthetic route, which is an important feature in the research and development of future drugs for neglected diseases.


Assuntos
Antiprotozoários/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Triose-Fosfato Isomerase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Sítios de Ligação , Doença de Chagas/tratamento farmacológico , Cisteína Endopeptidases/química , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Cetonas/química , Cetonas/farmacologia , Cetonas/uso terapêutico , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Triose-Fosfato Isomerase/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento
4.
PLoS One ; 6(4): e18791, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21533154

RESUMO

For a better comprehension of the structure-function relationship in proteins it is necessary to identify the amino acids that are relevant for measurable protein functions. Because of the numerous contacts that amino acids establish within proteins and the cooperative nature of their interactions, it is difficult to achieve this goal. Thus, the study of protein-ligand interactions is usually focused on local environmental structural differences. Here, using a pair of triosephosphate isomerase enzymes with extremely high homology from two different organisms, we demonstrate that the control of a seventy-fold difference in reactivity of the interface cysteine is located in several amino acids from two structurally unrelated regions that do not contact the cysteine sensitive to the sulfhydryl reagent methylmethane sulfonate, nor the residues in its immediate vicinity. The change in reactivity is due to an increase in the apparent pKa of the interface cysteine produced by the mutated residues. Our work, which involved grafting systematically portions of one protein into the other protein, revealed unsuspected and multisite long-range interactions that modulate the properties of the interface cysteines and has general implications for future studies on protein structure-function relationships.


Assuntos
Aminoácidos/química , Triose-Fosfato Isomerase/metabolismo , Trypanosoma/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Biocatálise , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA