Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38195942

RESUMO

Needle blights are serious fungal diseases affecting European natural and planted pine forests. Brown-spot needle blight (BSNB) disease, caused by the fungus Lecanosticta acicola, causes canopy defoliation and severe productivity losses, with consequences depending on host susceptibility. To gain new insights into BSNB plant-pathogen interactions, constitutive and pathogen-induced traits were assessed in two host species with differential disease susceptibility. Six-month-old Pinus radiata D. Don (susceptible) and Pinus pinea L. (more resistant) seedlings were needle inoculated with L. acicola under controlled conditions. Eighty days after inoculation, healthy-looking needles from symptomatic plants were assessed for physiological parameters and sampled for biochemical analysis. Disease progression, plant growth, leaf gas-exchanges and biochemical parameters were complemented with hormonal and untargeted primary metabolism analysis and integrated for a holistic analysis. Constitutive differences between pine species were observed. Pinus pinea presented higher stomatal conductance and transpiration rate and higher amino and organic acids, abscisic acid as well as putrescine content than P. radiata. Symptoms from BSNB disease were observed in 54.54% of P. radiata and 45.45% of P. pinea seedlings, being more pronounced and generalized in P. radiata. For both species, plant height, sub-stomatal CO2 concentration and water-use efficiency were impacted by infection. In P. radiata, total soluble sugars, starch and total flavonoids content increased after infection. No differences in hormone content after infection were observed. However, secondary metabolism was induced in P. pinea visible through total phenolics, flavonoids and putrescine accumulation. Overall, the observed results suggest that P. pinea constitutive and induced traits may function as two layers of a defence strategy which contributed to an increased BSNB resistance in comparison with P. radiata. This is the first integrative study linking plant physiological and molecular traits in Pinus-Lecanosticta acicola pathosystem, contributing to a better understanding of the underlying resistance mechanisms to BSNB disease in pines.


Assuntos
Ascomicetos , Pinus , Pinus/fisiologia , Putrescina/metabolismo , Plântula/fisiologia , Flavonoides/metabolismo
2.
Sci Rep ; 13(1): 11570, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463904

RESUMO

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.


Assuntos
Ecossistema , Micobioma , Animais , Humanos , Filogenia , Florestas , Geografia , Mudança Climática , Insetos
3.
Front Plant Sci ; 14: 1310254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186600

RESUMO

Introduction: Invasive fungi distributed worldwide through globalization have caused devastating diseases in different forests, causing economic and ecologic disturbances. Two such invasive species are Cryphonectria parasitica and Fusarium circinatum, which were introduced to Europe from North America, separated temporally: C. parasitica was introduced about nine decades ago, whereas F. circinatum was introduced around two decades ago. As C. parasitica had a longer time to undergo genetic changes, we hypothesized that it has higher genetic diversity than the recently introduced F. circinatum in Spain. In addition, we studied the genetic characterization of both fungi present in similar ecological conditions in Northern Spain with the aim of providing data for biocontrol measures. Methods: Molecular genetic markers were used to test these hypotheses, including mating type and DNA sequencing of internal transcribed spacer (ITS) regions. In addition, we used vegetative compatibility (VC) type markers in C. parasitica as the information about VC type is essential to apply biocontrol against the fungus. Results and discussion: All the isolates of C. parasitica from the studied area belonged to only one VC type (EU-1) and one mating type (MAT-2). However, three distinct haplotypes of C. parasitica were identified through ITS sequencing, showing that multiple introductions might have happened to Cantabria. Among F. circinatum, no diversity was observed in ITS and MAT loci in the studied area but isolates from other Spanish regions showed the presence of both mating types. Overall, C. parasitica had higher genetic diversity than F. circinatum, despite both organisms appearing to reproduce clonally. This study helped understand the invasion patterns of C. parasitica and F. circinatum in northern Spain and will be useful in applying biocontrol measures against both pathogens.

4.
Sci Rep ; 12(1): 21661, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522407

RESUMO

Fusarium circinatum, a fungal pathogen deadly to many Pinus species, can cause significant economic and ecological losses, especially if it were to become more widely established in Europe. Early detection tools with high-throughput capacity can increase our readiness to implement mitigation actions against new incursions. This study sought to develop a disease detection method based on volatile organic compound (VOC) emissions to detect F. circinatum on different Pinus species. The complete pipeline applied here, entailing gas chromatography-mass spectrometry of VOCs, automated data analysis and machine learning, distinguished diseased from healthy seedlings of Pinus sylvestris and Pinus radiata. In P. radiata, this distinction was possible even before the seedlings became visibly symptomatic, suggesting the possibility for this method to identify latently infected, yet healthy looking plants. Pinus pinea, which is known to be relatively resistant to F. circinatum, remained asymptomatic and showed no changes in VOCs over 28 days. In a separate analysis of in vitro VOCs collected from different species of Fusarium, we showed that even closely related Fusarium spp. can be readily distinguished based on their VOC profiles. The results further substantiate the potential for volatilomics to be used for early disease detection and diagnostic recognition.


Assuntos
Fusarium , Pinus , Compostos Orgânicos Voláteis , Doenças das Plantas/microbiologia , Pinus/microbiologia
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012499

RESUMO

RNA-based strategies for plant disease management offer an attractive alternative to agrochemicals that negatively impact human and ecosystem health and lead to pathogen resistance. There has been recent interest in using mycoviruses for fungal disease control after it was discovered that some cause hypovirulence in fungal pathogens, which refers to a decline in the ability of a pathogen to cause disease. Cryphonectria parasitica, the causal agent of chestnut blight, has set an ideal model of management through the release of hypovirulent strains. However, mycovirus-based management of plant diseases is still restricted by limited approaches to search for viruses causing hypovirulence and the lack of protocols allowing effective and systemic virus infection in pathogens. RNA interference (RNAi), the eukaryotic cell system that recognizes RNA sequences and specifically degrades them, represents a promising. RNA-based disease management method. The natural occurrence of cross-kingdom RNAi provides a basis for host-induced gene silencing, while the ability of most pathogens to uptake exogenous small RNAs enables the use of spray-induced gene silencing techniques. This review describes the mechanisms behind and the potential of two RNA-based strategies, mycoviruses and RNAi, for plant disease management. Successful applications are discussed, as well as the research gaps and limitations that remain to be addressed.


Assuntos
Micovírus , Vírus , Ecossistema , Micovírus/genética , Humanos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Plantas/genética , RNA , Interferência de RNA , Vírus/genética
6.
Methods Mol Biol ; 2536: 51-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819597

RESUMO

Fusarium circinatum is a serious invasive pathogen affecting conifers and causes the disease commonly known as pine pitch canker. Due to the outbreak in European countries, regulations stipulate that Member States must conduct annual official surveys for the fungus on their territory and report the results to the European Commission. Here, we describe the field and laboratory protocols used for the identification and diagnostic of the pathogen.


Assuntos
Fusarium , Pinus , Europa (Continente) , Pinus/microbiologia , Doenças das Plantas/microbiologia
7.
Sci Data ; 9(1): 62, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232978

RESUMO

International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.


Assuntos
Endófitos , Fungos , Insetos , Animais , Biodiversidade , Árvores
8.
BMC Genomics ; 23(1): 194, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35264109

RESUMO

BACKGROUND: One of the most promising strategies of Pine Pitch Canker (PPC) management is the use of reproductive plant material resistant to the disease. Understanding the complexity of plant transcriptome that underlies the defence to the causal agent Fusarium circinatum, would greatly facilitate the development of an accurate breeding program. Long non-coding RNAs (lncRNAs) are emerging as important transcriptional regulators under biotic stresses in plants. However, to date, characterization of lncRNAs in conifer trees has not been reported. In this study, transcriptomic identification of lncRNAs was carried out using strand-specific paired-end RNA sequencing, from Pinus radiata samples inoculated with F. circinatum at an early stage of infection. RESULTS: Overall, 13,312 lncRNAs were predicted through a bioinformatics approach, including long intergenic non-coding RNAs (92.3%), antisense lncRNAs (3.3%) and intronic lncRNAs (2.9%). Compared with protein-coding RNAs, pine lncRNAs are shorter, have lower expression, lower GC content and harbour fewer and shorter exons. A total of 164 differentially expressed (DE) lncRNAs were identified in response to F. circinatum infection in the inoculated versus mock-inoculated P. radiata seedlings. The predicted cis-regulated target genes of these pathogen-responsive lncRNAs were related to defence mechanisms such as kinase activity, phytohormone regulation, and cell wall reinforcement. Co-expression network analysis of DE lncRNAs, DE protein-coding RNAs and lncRNA target genes also indicated a potential network regulating pectinesterase activity and cell wall remodelling. CONCLUSIONS: This study presents the first comprehensive genome-wide analysis of P. radiata lncRNAs and provides the basis for future functional characterizations of lncRNAs in relation to pine defence responses against F. circinatum.


Assuntos
Fusarium , Pinus , RNA Longo não Codificante , Fusarium/genética , Pinus/genética , Melhoramento Vegetal , Doenças das Plantas/genética , RNA Longo não Codificante/genética
9.
Biotechniques ; 69(1): 369-375, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32336113

RESUMO

Fusarium circinatum is the causal agent of pitch canker, a lethal disease of pine and other conifers. Since F. circinatum is a quarantine organism, its timely detection could efficiently prevent its introduction into new areas or facilitate spread management in already infected sites. In this study, we developed a sequence-specific probe loop-mediated isothermal amplification (LAMP) assay for F. circinatum using a field-deployable portable instrument. The assay was able to recognize the pathogen in host tissues in just 30 min, and the sensitivity of the assay made it possible to detect even small amounts of F. circinatum DNA (as low as 0.5 pg/µl). The high efficiency of this method suggests its use as a standard diagnostic tool during phytosanitary controls.


Assuntos
Fusarium/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Fúngico/genética , Doenças das Plantas/microbiologia , Sensibilidade e Especificidade
10.
Plant Physiol Biochem ; 114: 88-99, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284060

RESUMO

Fusarium circinatum is the causal agent of pitch canker disease affecting Pinus spp. and Pseudotsuga menziesii worldwide. Under strict quarantine measures, alternative approaches for disease control are necessary. Phosphite (Phi) salts are known for their fungicidal activity and as plant resistance elicitors; however, its potential is yet to be acknowledged in the Pinus-F. circinatum model. The main aim of this study was to assess whether the application of a Phi-based commercial formulation would delay the progression of the pitch canker on Pinus radiata plants, and on the in vitro fungal growth. In vitro assays were performed using different Phi concentrations (1% and 4%) and a non-treated control (0%), and repeated in vivo using inoculated and non-inoculated plants. Plant physiological parameters and hormonal content were evaluated. Phi was effective at inhibiting in vitro mycelial growth in a dose dependent manner. Regardless of fungal inoculation, Phi application induced positive effects on plant performance, despite phytotoxic effects found at 4%. Fusarium circinatum infection led to a reduction in gas exchange and chlorophyll fluorescence (Fv/Fm and φPSII), while proline and hormone (JA, ABA and SA) levels increased. Phi was effective in delaying disease symptom development in a dose dependent manner, concurrent with in vitro observations: gas exchange and chlorophyll fluorescence (Fv/Fm) were unaffected; proline, MDA and ABA decreased; electrolyte leakage and total soluble sugars increased. This suggests a direct (pathogen growth inhibition) and indirect (host defense priming) action of Phi, showing that Phi represents a potential strategy to control F. circinatum infection.


Assuntos
Fusarium/patogenicidade , Fosfitos/farmacologia , Pinus/efeitos dos fármacos , Pinus/microbiologia , Compostos de Potássio/farmacologia , Antocianinas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Relação Dose-Resposta a Droga , Eletrólitos/metabolismo , Fluorescência , Peroxidação de Lipídeos/efeitos dos fármacos , Fosfitos/administração & dosagem , Pinus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Compostos de Potássio/administração & dosagem , Prolina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA