Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 26(5): 1432-1451, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28036141

RESUMO

Eukaryotic-like proteins (ELPs) are classes of proteins that are found in prokaryotes, but have a likely evolutionary origin in eukaryotes. ELPs have been postulated to mediate host-microbiome interactions. Recent work has discovered that prokaryotic symbionts of sponges contain abundant and diverse genes for ELPs, which could modulate interactions with their filter-feeding and phagocytic host. However, the extent to which these ELP genes are actually used and expressed by the symbionts is poorly understood. Here, we use metatranscriptomics to investigate ELP expression in the microbiomes of three different sponges (Cymbastella concentrica, Scopalina sp. and Tedania anhelens). We developed a workflow with optimized rRNA removal and in silico subtraction of host sequences to obtain a reliable symbiont metatranscriptome. This showed that between 1.3% and 2.3% of all symbiont transcripts contain genes for ELPs. Two classes of ELPs (cadherin and tetratricopeptide repeats) were abundantly expressed in the C. concentrica and Scopalina sp. microbiomes, while ankyrin repeat ELPs were predominant in the T. anhelens metatranscriptome. Comparison with transcripts that do not encode ELPs indicated a constitutive expression of ELPs across a range of bacterial and archaeal symbionts. Expressed ELPs also contained domains involved in protein secretion and/or were co-expressed with proteins involved in extracellular transport. This suggests these ELPs are likely exported, which could allow for direct interaction with the sponge. Our study shows that ELP genes in sponge symbionts represent actively expressed functions that could mediate molecular interaction between symbiosis partners.


Assuntos
Archaea/genética , Bactérias/genética , Microbiota , Poríferos/microbiologia , Animais , Repetição de Anquirina/genética , Caderinas/genética , Filogenia , Simbiose , Repetições de Tetratricopeptídeos/genética
2.
Ecology ; 94(12): 2781-91, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24597224

RESUMO

Microbes are known to form intricate and intimate relationships with most animal and plant taxa. Microbe--host symbiotic associations are poorly explored in comparison with other species interaction networks. The current paradigm on symbiosis research stems from species-poor systems where pairwise and reciprocally specialized interactions between a single microbe and a single host that coevolve are the norm. These symbioses involving just a few species are fascinating in their own right, but more diverse and complex host-associated microbial communities are increasingly found, with new emerging questions that require new paradigms and approaches. Here we adopt an intermediate complexity approach to study the specificity, phylogenetic community structure, and temporal variability of the subset of the most abundant bacteria associated with different sponge host species with diverse eco-evolutionary characteristics. We do so by using a monthly resolved annual temporal series of host-associated and free-living bacteria. Bacteria are very abundant and diverse within marine sponges, and these symbiotic interactions are hypothesized to have a very ancient origin. We show that host-bacteria reciprocal specialization depends on the temporal scale and level of taxonomic aggregation considered. Sponge hosts with similar eco-evolutionary characteristics (e.g., volume of tissue corresponding to microbes, water filtering rates, and microbial transmission type) have similar bacterial phylogenetic community structure when looking at interactions aggregated over time. In general, sponge hosts hypothesized to form more intricate relationships with bacteria show a remarkably persistent bacterial community over time. Other hosts, however, show a large turnover similar to that observed for free-living bacterioplankton. Our study highlights the importance of exploring temporal variability in host--microbe interaction networks if we aim to determine how specific and persistent these poorly explored but extremely common interactions are.


Assuntos
Bactérias/classificação , Poríferos/microbiologia , Simbiose , Animais , Ecossistema , Mar Mediterrâneo , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA