Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(5): 2978-2987, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38828035

RESUMO

In order for organic thermoelectrics to successfully establish their own niche as energy-harvesting materials, they must reach several crucial milestones, including high performance, long-term stability, and scalability. Performance and stability are currently being actively studied, whereas demonstrations of large-scale compatibility are far more limited and for carbon nanotubes (CNTs) are still missing. The scalability challenge includes material-related economic considerations as well as the availability of fast deposition methods that produce large-scale films that simultaneously satisfy the thickness constraints required for thermoelectric modules. Here we report on true solutions of CNTs that form gels upon air exposure, which can then be dried into micron-thick films. The CNT ink can be extruded using a slot-shaped nozzle into a continuous film (more than half a meter in the present paper) and patterned into alternating n- and p-type components, which are then folded to obtain the finished thermoelectric module. Starting from a given n-type film, differentiation between the n and p components is achieved by a simple postprocessing step that involves a partial oxidation reaction and neutralization of the dopant. The presented method allows the thermoelectric legs to seamlessly interconnect along the continuous film, thus avoiding the need for metal electrodes, and, most importantly, it is compatible with large-scale printing processes. The resulting thermoelectric legs retain 80% of their power factor after 100 days in air and about 30% after 300 days. Using the proposed methodology, we fabricate two thermoelectric modules of 4 and 10 legs that can produce maximum power outputs of 1 and 2.4 µW, respectively, at a temperature difference ΔT of 46 K.

2.
ACS Appl Bio Mater ; 6(7): 2860-2874, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37342003

RESUMO

The low endogenous regenerative capacity of the heart, added to the prevalence of cardiovascular diseases, triggered the advent of cardiac tissue engineering in the last decades. The myocardial niche plays a critical role in directing the function and fate of cardiomyocytes; therefore, engineering a biomimetic scaffold holds excellent promise. We produced an electroconductive cardiac patch of bacterial nanocellulose (BC) with polypyrrole nanoparticles (Ppy NPs) to mimic the natural myocardial microenvironment. BC offers a 3D interconnected fiber structure with high flexibility, which is ideal for hosting Ppy nanoparticles. BC-Ppy composites were produced by decorating the network of BC fibers (65 ± 12 nm) with conductive Ppy nanoparticles (83 ± 8 nm). Ppy NPs effectively augment the conductivity, surface roughness, and thickness of BC composites despite reducing scaffolds' transparency. BC-Ppy composites were flexible (up to 10 mM Ppy), maintained their intricate 3D extracellular matrix-like mesh structure in all Ppy concentrations tested, and displayed electrical conductivities in the range of native cardiac tissue. Furthermore, these materials exhibit tensile strength, surface roughness, and wettability values appropriate for their final use as cardiac patches. In vitro experiments with cardiac fibroblasts and H9c2 cells confirmed the exceptional biocompatibility of BC-Ppy composites. BC-Ppy scaffolds improved cell viability and attachment, promoting a desirable cardiomyoblast morphology. Biochemical analyses revealed that H9c2 cells showed different cardiomyocyte phenotypes and distinct levels of maturity depending on the amount of Ppy in the substrate used. Specifically, the employment of BC-Ppy composites drives partial H9c2 differentiation toward a cardiomyocyte-like phenotype. The scaffolds increase the expression of functional cardiac markers in H9c2 cells, indicative of a higher differentiation efficiency, which is not observed with plain BC. Our results highlight the remarkable potential use of BC-Ppy scaffolds as a cardiac patch in tissue regenerative therapies.


Assuntos
Miócitos Cardíacos , Polímeros , Polímeros/química , Pirróis/química , Diferenciação Celular
3.
Energy Environ Sci ; 15(7): 2958-2973, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35923416

RESUMO

Non-fullerene acceptors (NFAs) are excellent light harvesters, yet the origin of their high optical extinction is not well understood. In this work, we investigate the absorption strength of NFAs by building a database of time-dependent density functional theory (TDDFT) calculations of ∼500 π-conjugated molecules. The calculations are first validated by comparison with experimental measurements in solution and solid state using common fullerene and non-fullerene acceptors. We find that the molar extinction coefficient (ε d,max) shows reasonable agreement between calculation in vacuum and experiment for molecules in solution, highlighting the effectiveness of TDDFT for predicting optical properties of organic π-conjugated molecules. We then perform a statistical analysis based on molecular descriptors to identify which features are important in defining the absorption strength. This allows us to identify structural features that are correlated with high absorption strength in NFAs and could be used to guide molecular design: highly absorbing NFAs should possess a planar, linear, and fully conjugated molecular backbone with highly polarisable heteroatoms. We then exploit a random decision forest algorithm to draw predictions for ε d,max using a computational framework based on extended tight-binding Hamiltonians, which shows reasonable predicting accuracy with lower computational cost than TDDFT. This work provides a general understanding of the relationship between molecular structure and absorption strength in π-conjugated organic molecules, including NFAs, while introducing predictive machine-learning models of low computational cost.

4.
Rev Sci Instrum ; 93(3): 034902, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365009

RESUMO

We developed a novel contactless frequency-domain thermoreflectance approach to study thermal transport, which is particularly convenient when thermally anisotropic materials are considered. The method is based on a line-shaped heater geometry, produced with a holographic diffractive optical element, instead of using a spot heater as in conventional thermoreflectance. The heater geometry is similar to the one used in the 3-omega method, however, keeping all the technical advantages offered by non-contact methodologies. The present method is especially suitable to determine all the elements of the thermal conductivity tensor, which is experimentally achieved by simply rotating the sample with respect to the line-shaped optical heater. We provide the mathematical solution of the heat equation for the cases of anisotropic substrates, thin films, and multilayer systems. This methodology allows an accurate determination of the thermal conductivity and does not require complex modeling or intensive computational efforts to process the experimental data, i.e., the thermal conductivity is obtained through a simple linear fit ("slope method"), in a similar fashion to the 3-omega method. We demonstrate the potential of this approach by studying isotropic and anisotropic materials in a wide range of thermal conductivities. In particular, we have studied the following inorganic and organic systems: (i) glass, Si, and Ge substrates (isotropic), (ii) ß-Ga2O3 and a Kapton substrate (anisotropic), and (iii) a 285 nm thick SiO2 thin film deposited on a Si substrate. The accuracy in the determination of the thermal conductivity is estimated as ≈5%, whereas the temperature uncertainty is ΔT ≈ 3 mK.

5.
Small ; 16(47): e2004795, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33135371

RESUMO

Transfer printing is one of the key nanofabrication techniques for the large-scale manufacturing of complex device architectures. It provides a cost-effective and high-throughput route for the integration of independently processed materials into spatially tailored architectures. Furthermore, this method enables the fabrication of flexible and curvilinear devices, paving the way for the fabrication of a new generation of technologies for optics, electronics, and biomedicine. In this work, hydroxypropyl cellulose (HPC) membranes are used as water soluble adhesives for transfer printing processes with improved performance and versatility compared to conventional silicone alternatives. The high-water solubility and excellent mechanical properties of HPC facilitate transfer printing with high yield for both metal and carbon nanotubes (CNTs) inks. In the case of metal inks, crack-free stripping of silver films and the simple fabrication of Moiré Plasmonic architectures of different geometries are demonstrated. Furthermore, HPC membranes are used to transfer print carbon nanotube films with different thicknesses and up to 77% transparency in the visible and near infrared region with potential applications as transparent conductive substrates. Finally, the use of prepatterned HPC membranes enables nanoscale patterning of CNT with feature resolution down to 1 µm.

6.
Rev Sci Instrum ; 91(10): 105111, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138583

RESUMO

This work documents an all-in-one custom setup that allows us to measure the in-plane Seebeck coefficients and electrical conductivities of anisotropic thin film samples close to room temperature. Both pairs, S∥ and σ∥ and S⊥ and σ⊥, can be measured using four contacts on the same sample, reducing measurement time and minimizing potential sources of error due to aggregating data from several distinct samples. The setup allows us to measure the electrical conductivity of isotropic samples using the well-known van der Pauw method. For samples with in-plane anisotropy, the two components σ∥ and σ⊥ can be extracted from the same type of measurements by performing additional calculations. Using the same contacts, the Seebeck coefficient along one direction is measured using a differential steady-state method. After rotating the sample by 90°, the orthogonal Seebeck component can be measured. In order to show the generality of the method, we measure different types of samples, from metal references to oriented doped conjugated polymers.

7.
Macromolecules ; 53(2): 609-620, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32089566

RESUMO

Two doping mechanisms are known for the well-studied materials poly(3-hexylthiophene) (P3HT) and poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), namely, integer charge transfer (ICT) and charge transfer complex (CTC) formation. Yet, there is poor understanding of the effect of doping mechanism on thermal stability and the thermoelectric properties. In this work, we present a method to finely adjust the ICT to CTC ratio. Using it, we characterize electrical and thermal conductivities as well as the Seebeck coefficient and the long-term stability under thermal stress of P3HT and PBTTT of different ICT/CTC ratios. We establish that doping through the CTC results in more stable, yet lower conductivity samples compared to ICT doped films. Importantly, moderate CTC fractions of ∼33% are found to improve the long-term stability without a significant sacrifice in electrical conductivity. Through visible and IR spectroscopies, polarized optical microscopy, and grazing-incidence wide-angle X-ray scattering, we find that the CTC dopant molecule access sites within the polymer network are less prone to dedoping upon thermal exposure.

8.
Energy Environ Sci ; 12(2): 716-726, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30930961

RESUMO

Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivity of biopolymers with the mechanical strength and good electrical properties of carbon nanotubes (CNTs). Here we use bacteria in environmentally friendly aqueous media to grow large area bacterial nanocellulose (BC) films with an embedded highly dispersed CNT network. The thick films (≈10 µm) exhibit tuneable transparency and colour, as well as low thermal and high electrical conductivity. Moreover, they are fully bendable, can conformally wrap around heat sources and are stable above 500 K, which expands the range of potential uses compared to typical conducting polymers and composites. The high porosity of the material facilitates effective n-type doping, enabling the fabrication of a thermoelectric module from farmed thermoelectric paper. Because of vertical phase separation of the CNTs in the BC composite, the grown films at the same time serve as both the active layer and separating layer, insulating each thermoelectric leg from the adjacent ones. Last but not least, the BC can be enzymatically decomposed, completely reclaiming the embedded CNTs.

9.
Nat Mater ; 15(7): 746-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183327

RESUMO

The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

10.
Adv Mater ; 28(14): 2782-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26853701

RESUMO

UV-induced switching from p- to n-type character is demonstrated during deposition of carbon-nanotube-conjugated polymer composites. This opens the possibility to photopattern n-type regions within an otherwise p-type film, which has a potential for complementary circuitry or, as shown here, thermoelectric generators made from a single solution.

11.
ACS Nano ; 7(5): 4637-46, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23611512

RESUMO

Interfaces play a determining role in establishing the degree of carrier selectivity at outer contacts in organic solar cells. Considering that the bulk heterojunction consists of a blend of electron donor and acceptor materials, the specific relative surface coverage at the electrode interfaces has an impact on the carrier selectivity. This work unravels how fullerene surface coverage at cathode contacts lies behind the carrier selectivity of the electrodes. A variety of techniques such as variable-angle spectroscopic ellipsometry and capacitance-voltage measurements have been used to determine the degree of fullerene surface coverage in a set of PCPDTBT-based solar cells processed with different additives. A full screening from highly fullerene-rich to polymer-rich phases attaching the cathode interface has enabled the overall correlation between surface morphology (relative coverage) and device performance (operating parameters). The general validity of the measurements is further discussed in three additional donor/acceptor systems: PCPDTBT, P3HT, PCDTBT, and PTB7 blended with fullerene derivatives. It is demonstrated that a fullerene-rich interface at the cathode is a prerequisite to enhance contact selectivity and consequently power conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA