Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Hum Brain Mapp ; 44(8): 3377-3393, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947581

RESUMO

Cerebral blood flow (CBF) is critical for brain metabolism and function. Age-related changes in CBF are associated with increased risk of neurocognitive disorders and vascular events such as stroke. Identifying correlates and positive modifiers of age-related changes in CBF before the emergence of incipient clinical decline may inform public health advice and clinical practice. Former research has been inconclusive regarding the association between regular physical activity and CBF, and there is a lack of studies on the association between level of everyday activities and CBF, in older adults. To investigate these relationships, 118 healthy community-dwelling adults (65-89 years) underwent pseudo-continuous arterial spin labeling (ASL) MRI, neurocognitive, physical, and activity assessments at baseline. Eighty-six participants completed a follow-up ASL MRI, on average 506 (SD = 113) days after the baseline scan. Cross-sectional analysis revealed credible evidence for positive associations between time spent on low intensity physical activity and CBF in multiple cortical and subcortical regions, time spent on moderate to vigorous intensity physical activity and accumbens CBF, participation in social activity and CBF in multiple cortical regions, and between reading and thalamic CBF, indicating higher regional CBF in more active adults. Longitudinal analysis revealed anecdotal evidence for an interaction between time and baseline level of gardening on occipital and parietal CBF, and baseline reading on pallidum CBF, indicating more change in CBF in adults with lower level of activity. The findings support that malleable lifestyle factors contribute to healthy brain aging, with relevance for public health guidelines.


Assuntos
Vida Independente , Imageamento por Ressonância Magnética , Humanos , Idoso , Marcadores de Spin , Estudos Longitudinais , Estudos Transversais , Circulação Cerebrovascular/fisiologia , Voluntários
2.
Brain Behav ; 12(8): e2707, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861657

RESUMO

BACKGROUND AND PURPOSE: Sequalae following stroke represents a significant challenge in current rehabilitation. The location and size of focal lesions are only moderately predictive of the diverse cognitive outcome after stroke. One explanation building on recent work on brain networks proposes that the cognitive consequences of focal lesions are caused by damages to anatomically distributed brain networks supporting cognition rather than specific lesion locations. METHODS: To investigate the association between poststroke structural disconnectivity and cognitive performance, we estimated individual level whole-brain disconnectivity probability maps based on lesion maps from 102 stroke patients using normative data from healthy controls. Cognitive performance was assessed in the whole sample using Montreal Cognitive Assessment, and a more comprehensive computerized test protocol was performed on a subset (n = 82). RESULTS: Multivariate analysis using Partial Least Squares on the disconnectome maps revealed that higher disconnectivity in right insular and frontal operculum, superior temporal gyrus and putamen was associated with poorer MoCA performance, indicating that lesions in regions connected with these brain regions are more likely to cause cognitive impairment. Furthermore, our results indicated that disconnectivity within these clusters was associated with poorer performance across multiple cognitive domains. CONCLUSIONS: These findings demonstrate that the extent and distribution of structural disconnectivity following stroke are sensitive to cognitive deficits and may provide important clinical information predicting poststroke cognitive sequalae.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Acidente Vascular Cerebral , Encéfalo , Mapeamento Encefálico/métodos , Cognição , Disfunção Cognitiva/etiologia , Humanos , Testes Neuropsicológicos
3.
Brain Behav ; 12(7): e2643, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35666655

RESUMO

BACKGROUND: Fatigue and emotional distress rank high among self-reported unmet needs in life after stroke. Transcranial direct current stimulation (tDCS) may have the potential to alleviate these symptoms for some patients, but the acceptability and effects for chronic stroke survivors need to be explored in randomized controlled trials. METHODS: Using a randomized sham-controlled parallel design, we evaluated whether six sessions of 1 mA tDCS (anodal over F3, cathodal over O2) combined with computerized cognitive training reduced self-reported symptoms of fatigue and depression. Among the 74 chronic stroke patients enrolled at baseline, 54 patients completed the intervention. Measures of fatigue and depression were collected at five time points spanning a 2 months period. RESULTS: While symptoms of fatigue and depression were reduced during the course of the intervention, Bayesian analyses provided evidence for no added beneficial effect of tDCS. Less severe baseline symptoms were associated with higher performance improvement in select cognitive tasks, and study withdrawal was higher in patients with more fatigue and younger age. Time-resolved symptom analyses by a network approach suggested higher centrality of fatigue items (except item 1 and 2) than depression items. CONCLUSION: The results reveal no add-on effect of tDCS on fatigue or depression but support the notion of fatigue as a relevant clinical symptom with possible implications for treatment adherence and response.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Teorema de Bayes , Cognição , Depressão/etiologia , Depressão/terapia , Método Duplo-Cego , Fadiga/etiologia , Fadiga/terapia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua/métodos , Resultado do Tratamento
4.
Neuroimage Clin ; 33: 102949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114636

RESUMO

There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor cardiometabolic health and neurodegenerative conditions. Although research has demonstrated deleterious effects of obesity on brain structure and function, the majority of studies have used conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While sensitive to gross features of body composition, such global anthropometric features fail to describe regional differences in body fat distribution and composition. The sample consisted of baseline brain magnetic resonance imaging (MRI) acquired from 790 healthy participants aged 18-94 years (mean ± standard deviation (SD) at baseline: 46.8 ± 16.3), and follow-up brain MRI collected from 272 of those individuals (two time-points with 19.7 months interval, on average (min = 9.8, max = 35.6). Of the 790 included participants, cross-sectional body MRI data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6, SD = 15.6). Adopting a mixed cross-sectional and longitudinal design, we investigated cross-sectional body magnetic resonance imaging measures of adipose tissue distribution in relation to longitudinal brain structure using MRI-based morphometry (T1) and diffusion tensor imaging (DTI). We estimated tissue-specific brain age at two time points and performed Bayesian multilevel modelling to investigate the associations between adipose measures at follow-up and brain age gap (BAG) - the difference between actual age and the prediction of the brain's biological age - at baseline and follow-up. We also tested for interactions between BAG and both time and age on each adipose measure. The results showed credible associations between T1-based BAG and liver fat, muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of the study period in people with higher measures of adipose tissue. The results show that specific measures of fat distribution are associated with brain ageing and that different compartments of adipose tissue may be differentially linked with increased brain ageing, with potential to identify key processes involved in age-related transdiagnostic disease processes.


Assuntos
Distribuição da Gordura Corporal , Imagem de Tensor de Difusão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Distribuição Tecidual , Adulto Jovem
5.
Hum Brain Mapp ; 43(2): 700-720, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626047

RESUMO

The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.


Assuntos
Senilidade Prematura , Envelhecimento , Encéfalo , Fatores de Risco Cardiometabólico , Adulto , Fatores Etários , Envelhecimento/sangue , Envelhecimento/patologia , Envelhecimento/fisiologia , Senilidade Prematura/sangue , Senilidade Prematura/diagnóstico por imagem , Senilidade Prematura/patologia , Senilidade Prematura/fisiopatologia , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiologia , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade
6.
Neuroimage Clin ; 31: 102767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34330086

RESUMO

Maintaining high levels of daily activity and physical capability have been proposed as important constituents to promote healthy brain and cognitive aging. Studies investigating the associations between brain health and physical activity in late life have, however, mainly been based on self-reported data or measures designed for clinical populations. In the current study, we examined cross-sectional associations between physical activity, recorded by an ankle-positioned accelerometer for seven days, physical capability (grip strength, postural control, and walking speed), and neuroimaging based surrogate markers of brain health in 122 healthy older adults aged 65-88 years. We used a multimodal brain imaging approach offering complementary structural MRI based indicators of brain health: global white matter fractional anisotropy (FA) and mean diffusivity (MD) based on diffusion tensor imaging, and subcortical and global brain age based on brain morphology inferred from T1-weighted MRI data. In addition, based on the results from the main analysis, follow-up regression analysis was performed to test for association between the volume of key subcortical regions of interest (hippocampus, caudate, thalamus and cerebellum) and daily steps, and a follow-up voxelwise analysis to test for associations between walking speed and FA across the white matter Tract-Based Spatial Statistics (TBSS) skeleton. The analyses revealed a significant association between global FA and walking speed, indicating higher white matter integrity in people with higher pace. Voxelwise analysis supported widespread significant associations. We also found a significant interaction between sex and subcortical brain age on number of daily steps, indicating younger-appearing brains in more physically active women, with no significant associations among men. These results provide insight into the intricate associations between different measures of brain and physical health in old age, and corroborate established public health advice promoting physical activity.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Idoso , Anisotropia , Encéfalo/diagnóstico por imagem , Estudos Transversais , Exercício Físico , Feminino , Humanos , Vida Independente , Masculino , Substância Branca/diagnóstico por imagem
7.
Neuroimage Clin ; 30: 102635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33799271

RESUMO

Stroke patients commonly suffer from post stroke fatigue (PSF). Despite a general consensus that brain perturbations constitute a precipitating event in the multifactorial etiology of PSF, the specific predictive value of conventional lesion characteristics such as size and localization remains unclear. The current study represents a novel approach to assess the neural correlates of PSF in chronic stroke patients. While previous research has focused primarily on lesion location or size, with mixed or inconclusive results, we targeted the extended structural network implicated by the lesion, and evaluated the added explanatory value of a structural disconnectivity approach with regards to the brain correlates of PSF. To this end, we estimated individual structural brain disconnectome maps in 84 S survivors in the chronic phase (≥3 months post stroke) using information about lesion location and normative white matter pathways obtained from 170 healthy individuals. PSF was measured by the Fatigue Severity Scale (FSS). Voxel wise analyses using non-parametric permutation-based inference were conducted on disconnectome maps to estimate regional effects of disconnectivity. Associations between PSF and global disconnectivity and clinical lesion characteristics were tested by linear models, and we estimated Bayes factor to quantify the evidence for the null and alternative hypotheses, respectively. The results revealed no significant associations between PSF and disconnectome measures or lesion characteristics, with moderate evidence in favor of the null hypothesis. These results suggest that symptoms of post-stroke fatigue among chronic stroke patients are not simply explained by lesion characteristics or the extent and distribution of structural brain disconnectome, and are discussed in light of methodological considerations.


Assuntos
Acidente Vascular Cerebral , Substância Branca , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Fadiga/etiologia , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem
8.
Mol Psychiatry ; 26(8): 3876-3883, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32047264

RESUMO

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.


Assuntos
Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Putamen , Tálamo
9.
Hum Brain Mapp ; 42(4): 1167-1181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33216408

RESUMO

Computerized cognitive training (CCT) combined with transcranial direct current stimulation (tDCS) has showed some promise in alleviating cognitive impairments in patients with brain disorders, but the robustness and possible mechanisms are unclear. In this prospective double-blind randomized clinical trial, we investigated the feasibility and effectiveness of combining CCT and tDCS, and tested the predictive value of and training-related changes in fMRI-based brain activation during attentive performance (multiple object tracking) obtained at inclusion, before initiating training, and after the three-weeks intervention in chronic stroke patients (>6 months since hospital admission). Patients were randomized to one of two groups, receiving CCT and either (a) tDCS targeting left dorsolateral prefrontal cortex (1 mA), or (b) sham tDCS, with 40s active stimulation (1 mA) before fade out of the current. Of note, 77 patients were enrolled in the study, 54 completed the cognitive training, and 48 completed all training and MRI sessions. We found significant improvement in performance across all trained tasks, but no additional gain of tDCS. fMRI-based brain activation showed high reliability, and higher cognitive performance was associated with increased tracking-related activation in the dorsal attention network and default mode network as well as anterior cingulate after compared to before the intervention. We found no significant associations between cognitive gain and brain activation measured before training or in the difference in activation after intervention. Combined, these results show significant training effects on trained cognitive tasks in stroke survivors, with no clear evidence of additional gain of concurrent tDCS.


Assuntos
Disfunção Cognitiva/reabilitação , Remediação Cognitiva , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Avaliação de Resultados em Cuidados de Saúde , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua , Idoso , Disfunção Cognitiva/etiologia , Terapia Combinada , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Acidente Vascular Cerebral/complicações , Sobreviventes , Terapia Assistida por Computador
10.
PeerJ ; 8: e9948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194366

RESUMO

Attentional deficits following stroke are common and pervasive, and are important predictors for functional recovery. Attentional functions comprise a set of specific cognitive processes allowing to attend, filter and select among a continuous stream of stimuli. These mechanisms are fundamental for more complex cognitive functions such as learning, planning and cognitive control, all crucial for daily functioning. The distributed functional neuroanatomy of these processes is a likely explanation for the high prevalence of attentional impairments following stroke, and underscores the importance of a clinical implementation of computational approaches allowing for sensitive and specific modeling of attentional sub-processes. The Theory of Visual Attention (TVA) offers a theoretical, computational, neuronal and practical framework to assess the efficiency of visual selection performance and parallel processing of multiple objects. Here, in order to assess the sensitivity and reliability of TVA parameters reflecting short-term memory capacity (K), processing speed (C) and perceptual threshold (t 0), we used a whole-report paradigm in a cross-sectional case-control comparison and across six repeated assessments over the course of a three-week computerized cognitive training (CCT) intervention in chronic stroke patients (> 6 months since hospital admission, NIHSS ≤ 7 at hospital discharge). Cross-sectional group comparisons documented lower short-term memory capacity, lower processing speed and higher perceptual threshold in patients (n = 70) compared to age-matched healthy controls (n = 140). Further, longitudinal analyses in stroke patients during the course of CCT (n = 54) revealed high reliability of the TVA parameters, and higher processing speed at baseline was associated with larger cognitive improvement after the intervention. The results support the feasibility, reliability and sensitivity of TVA-based assessment of attentional functions in chronic stroke patients.

11.
Heliyon ; 6(9): e04854, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995596

RESUMO

A cerebral stroke is characterized by compromised brain function due to an interruption in cerebrovascular blood supply. Although stroke incurs focal damage determined by the vascular territory affected, clinical symptoms commonly involve multiple functions and cognitive faculties that are insufficiently explained by the focal damage alone. Functional connectivity (FC) refers to the synchronous activity between spatially remote brain regions organized in a network of interconnected brain regions. Functional magnetic resonance imaging (fMRI) has advanced this system-level understanding of brain function, elucidating the complexity of stroke outcomes, as well as providing information useful for prognostic and rehabilitation purposes. We tested for differences in brain network connectivity between a group of patients with minor ischemic strokes in sub-acute phase (n = 44) and matched controls (n = 100). As neural network configuration is dependent on cognitive effort, we obtained fMRI data during rest and two load levels of a multiple object tracking (MOT) task. Network nodes and time-series were estimated using independent component analysis (ICA) and dual regression, with network edges defined as the partial temporal correlations between node pairs. The full set of edgewise FC went into a cross-validated regularized linear discriminant analysis (rLDA) to classify groups and cognitive load. MOT task performance and cognitive tests revealed no significant group differences. While multivariate machine learning revealed high sensitivity to experimental condition, with classification accuracies between rest and attentive tracking approaching 100%, group classification was at chance level, with negligible differences between conditions. Repeated measures ANOVA showed significantly stronger synchronization between a temporal node and a sensorimotor node in patients across conditions. Overall, the results revealed high sensitivity of FC indices to task conditions, and suggest relatively small brain network-level disturbances after clinically mild strokes.

12.
Eur J Neurosci ; 52(7): 3828-3845, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32530498

RESUMO

Post-stroke fatigue (PSF) is prevalent among stroke patients, but its mechanisms are poorly understood. Many patients with PSF experience cognitive difficulties, but studies aiming to identify cognitive correlates of PSF have been largely inconclusive. With the aim of characterizing the relationship between subjective fatigue and attentional function, we collected behavioral data using the attention network test (ANT) and self-reported fatigue scores using the fatigue severity scale (FSS) from 53 stroke patients. In order to evaluate the utility and added value of computational modeling for delineating specific underpinnings of response time (RT) distributions, we fitted a hierarchical drift diffusion model (hDDM) to the ANT data. Results revealed a relationship between fatigue and RT distributions. Specifically, there was a positive interaction between FSS score and elapsed time on RT. Group analyses suggested that patients without PSF increased speed during the course of the session, while patients with PSF did not. In line with the conventional analyses based on observed RT, the best fitting hDD model identified an interaction between elapsed time and fatigue on non-decision time, suggesting an increase in time needed for stimulus encoding and response execution rather than cognitive information processing and evidence accumulation. These novel results demonstrate the significance of considering the sustained nature of effort when defining the cognitive phenotype of PSF, intuitively indicating that the cognitive phenotype of fatigue entails an increased vulnerability to sustained effort, and suggest that the use of computational approaches offers a further characterization of specific processes underlying behavioral differences.


Assuntos
Depressão , Acidente Vascular Cerebral , Cognição , Fadiga/etiologia , Humanos , Fenótipo , Acidente Vascular Cerebral/complicações
13.
Neuroimage Clin ; 25: 102159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31927499

RESUMO

Cognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training (CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction. By integrating information not only about lesion extent and localization, but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction models in order to tailor cognitive intervention for patients, especially in a chronic phase. Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain. In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS≤7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In addition, patients were randomized to one of two groups receiving either active or sham transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap (estimated age - chronological age) on cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and reliable in stroke patients. However, no significant association between brain age and both performance and response to cognitive training were found.


Assuntos
Envelhecimento , Encéfalo , Disfunção Cognitiva , Remediação Cognitiva , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/terapia , Terapia Combinada , Método Duplo-Cego , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Adulto Jovem
14.
Mol Psychiatry ; 25(11): 3053-3065, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30279459

RESUMO

The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Hipocampo/anatomia & histologia , Hipocampo/patologia , Neuroimagem , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
16.
Nat Neurosci ; 22(10): 1617-1623, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551603

RESUMO

Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Encéfalo/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Pessoa de Meia-Idade , Testes Neuropsicológicos , Esquizofrenia/genética , Esquizofrenia/patologia , Caracteres Sexuais , Adulto Jovem
17.
PeerJ ; 6: e5908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533290

RESUMO

Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have yet to be adequately characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18-87 years. To compare the tissue-specific brain ages and their cognitive sensitivity, we applied each of the 11 models in an independent and cognitively well-characterized sample (n = 265, 20-88 years). Correlations between true and estimated age and mean absolute error (MAE) in our test sample were highest for the most comprehensive brain morphometry (r = 0.83, CI:0.78-0.86, MAE = 6.76 years) and white matter microstructure (r = 0.79, CI:0.74-0.83, MAE = 7.28 years) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders.

18.
Neuroimage ; 148: 364-372, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28111190

RESUMO

Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task-modulation in edgewise FC was primarily observed between attention- and sensorimotor networks; with decreased negative correlations between attention- and default mode networks in older adults. These results demonstrate that the magnitude and configuration of age-related differences in brain functional connectivity are partly dependent on cognitive context and load, which emphasizes the importance of assessing brain connectivity differences across a range of cognitive contexts beyond the resting-state.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Vias Neurais/crescimento & desenvolvimento , Desempenho Psicomotor/fisiologia , Descanso/fisiologia , Adolescente , Adulto , Idoso , Atenção/fisiologia , Cognição/fisiologia , Análise Discriminante , Feminino , Humanos , Testes de Inteligência , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Adulto Jovem
19.
Brain Imaging Behav ; 11(5): 1497-1514, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27738994

RESUMO

The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.


Assuntos
Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Lateralidade Funcional , Caracteres Sexuais , Adolescente , Adulto , Idoso , Envelhecimento/genética , Encéfalo/anatomia & histologia , Feminino , Lateralidade Funcional/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Tamanho do Órgão , Característica Quantitativa Herdável , Adulto Jovem
20.
Brain Behav ; 6(11): e00533, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27843692

RESUMO

INTRODUCTION: Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. METHODS: We obtained fMRI data during MOT at two load conditions from a group of younger (n = 25, mean age = 24.4 ± 5.1 years) and older (n = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. RESULTS: Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. CONCLUSION: Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA