RESUMO
The reactivity of silicates in aqueous solution is relevant to various chemistries ranging from silicate minerals in geology, to the C-S-H phase in cement, nanoporous zeolite catalysts, or highly porous precipitated silica. While simulations of chemical reactions can provide insight at the molecular level, balancing accuracy and scale in reactive simulations in the condensed phase is a challenge. Here, we demonstrate how a machine-learning reactive interatomic potential trained on PaiNN architecture can accurately capture silicate-water reactivity. The model was trained on a dataset comprising 400,000 energies and forces of molecular clusters at the ωB97X-D3/def2-TZVP level. To ensure the robustness of the model, we introduce a general active learning strategy based on the attribution of the model uncertainty, that automatically isolates uncertain regions of bulk simulations to be calculated as small-sized clusters. The potential reproduces static and dynamic properties of liquid water and solid crystalline silicates, despite having been trained exclusively on cluster data. Furthermore, we utilize enhanced sampling simulations to recover the self-ionization reactivity of water accurately, and the acidity of silicate oligomers, and lastly study the silicate dimerization reaction in a water solution at neutral conditions and find that the reaction occurs through a flanking mechanism.
RESUMO
The prototypical pillared layer MOFs, formed by a square lattice of paddle-wheel units and connected by dinitrogen pillars, can undergo a breathing phase transition by a "wine-rack" type motion of the square lattice. We studied this behavior, which is not yet fully understood, using an accurate first principles parameterized force field (MOF-FF) for larger nanocrystallites on the example of Zn2(bdc)2(dabco) [bdc: benzenedicarboxylate, dabco: (1,4-diazabicyclo[2.2.2]octane)], and found clear indications for an interface between a closed and an open pore phase traveling through the system during the phase transformation [J. Keupp and R. Schmid, Adv. Theory Simul., 2019, 2, 1900117]. In conventional simulations in small supercells this mechanism is prevented by periodic boundary conditions (PBCs), enforcing a synchronous transformation of the entire crystal. Here, we extend this investigation to pillared layer MOFs with flexible side-chains, attached to the linker. Such functionalized (fu-)MOFs are experimentally known to have different properties with the side-chains acting as fixed guest molecules. First, in order to extend the parameterization for such flexible groups, a new parameterization strategy for MOF-FF had to be developed, using a multi-structure force based fit method. The resulting parameterization for a library of fu-MOFs is then validated with respect to a set of reference systems and shows very good accuracy. In the second step, a series of fu-MOFs with increasing side-chain length is studied with respect to the influence of the side-chains on the breathing behavior. For small supercells in PBCs a systematic trend of the closed pore volume with the chain length is observed. However, for a nanocrystallite model a distinct interface between a closed and an open pore phase is visible only for the short chain length, whereas for longer chains the interface broadens and a nearly concerted transformation is observed. Only by molecular dynamics simulations using accurate force fields can such complex phenomena can be studied on a molecular level.
RESUMO
Phonons crucially impact a variety of properties of organic semiconductor materials. For instance, charge- and heat transport depend on low-frequency phonons, while for other properties, such as the free energy, especially high-frequency phonons count. For all these quantities one needs to know the entire phonon band structure, whose simulation becomes exceedingly expensive for more complex systems when using methods like dispersion-corrected density functional theory (DFT). Therefore, in the present contribution we evaluate the performance of more approximate methodologies, including density functional tight binding (DFTB) and a pool of force fields (FF) of varying complexity and sophistication. Beyond merely comparing phonon band structures, we also critically evaluate to what extent derived quantities, like temperature-dependent heat capacities, mean squared thermal displacements, and temperature-dependent free energies are impacted by shortcomings in the description of the phonon bands. As a benchmark system, we choose (deuterated) naphthalene, as the only organic semiconductor material for which to date experimental phonon band structures are available in the literature. Overall, the best performance among the approximate methodologies is observed for a system-specifically parametrized second-generation force field. Interestingly, in the low-frequency regime also force fields with a rather simplistic model for the bonding interactions (like the General Amber Force Field) perform rather well. As far as the tested DFTB parametrization is concerned, we obtain a significant underestimation of the unit-cell volume resulting in a pronounced overestimation of the phonon energies in the low-frequency region. This cannot be mended by relying on the DFT-calculated unit cell, since with this unit cell the DFTB phonon frequencies significantly underestimate the experiments.
RESUMO
Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paraelectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength µ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strengths are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics, or any scenario where movable dipolar fragments respond to external electric fields.
RESUMO
In this paper, we parametrized in a consistent way a new force field for a range of different zeolitic imidazolate framework systems (ZIF-8, ZIF-8(H), ZIF-8(Br), and ZIF-8(Cl)), extending the MOF-FF parametrization methodology in two aspects. First, we implemented the possibility to use periodic reference data in order to prevent the difficulty of generating representative finite clusters. Second, a new optimizer based on the covariance matrix adaptation evolutionary strategy (CMA-ES) was employed during the parametrization process. We confirmed that CMA-ES, as a state-of-the-art black box optimizer for problems on continuous variables, is more efficient and versatile for force field optimization than the previous genetic algorithm. The obtained force field was then validated with respect to some static and dynamic properties. Much effort was spent to ensure that the FF is able to describe the crucial linker swing effect in a large number of ZIF-8 derivatives. For this reason, we compared our force field to ab initio molecular dynamic simulations and found an accuracy comparable to those obtained by different exchange-correlation functionals.
RESUMO
The need for sustainable catalysts for an efficient hydrogen evolution reaction is of significant interest for modern society. Inspired by comparable structural properties of [FeNi]-hydrogenase, here we present the natural ore pentlandite (Fe4.5Ni4.5S8) as a direct 'rock' electrode material for hydrogen evolution under acidic conditions with an overpotential of 280 mV at 10 mA cm(-2). Furthermore, it reaches a value as low as 190 mV after 96 h of electrolysis due to surface sulfur depletion, which may change the electronic structure of the catalytically active nickel-iron centres. The 'rock' material shows an unexpected catalytic activity with comparable overpotential and Tafel slope to some well-developed metallic or nanostructured catalysts. Notably, the 'rock' material offers high current densities (≤650 mA cm(-2)) without any loss in activity for approximately 170 h. The superior hydrogen evolution performance of pentlandites as 'rock' electrode labels this ore as a promising electrocatalyst for future hydrogen-based economy.
RESUMO
We have adapted our genetic algorithm based optimization approach, originally developed to generate force field parameters from quantum mechanic reference data, to derive a first coarse grained force field for a MOF, taking the atomistic MOF-FF as a reference. On the example of the copper paddle-wheel based HKUST-1, a maximally coarse grained model, using a single bead for each three and four coordinated vertex, was developed as a proof of concept. By adding non-bonded interactions with a modified Buckingham potential, the resulting MOF-FF-CGNB is able to predict local deformation energies of the building blocks as well as bulk properties like the tbovs.pto energy difference or elastic constants in a semi-quantitative way. As expected, the negative thermal expansion of HKUST-1 is not reproduced by the maximally coarse grained model. At the expense of atomic resolution, substantially larger systems (up to tens of nanometers in size) can be simulated with respect to structural and mechanical properties, bridging the gap to the mesoscale. As an example the deformation of the [111] surface of HKUST-1 by a "tip" could be computed without artifacts from periodic images.
RESUMO
A series of defect-engineered metal-organic frameworks (DEMOFs) derived from parent microporous MOFs was obtained by systematic doping with defective linkers during synthesis, leading to the simultaneous and controllable modification of coordinatively unsaturated metal sites (CUS) and introduction of functionalized mesopores. These materials were investigated via temperature-dependent adsorption/desorption of CO monitored by FTIR spectroscopy under ultra-high-vacuum conditions. Accurate structural models for the generated point defects at CUS were deduced by matching experimental data with theoretical simulation. The results reveal multivariate diversity of electronic and steric properties at CUS, demonstrating the MOF defect structure modulation at two length scales in a single step to overcome restricted active site specificity and confined coordination space at CUS. Moreover, the DEMOFs exhibit promising modified physical properties, including band gap, magnetism, and porosity, with hierarchical micro/mesopore structures correlated with the nature and the degree of defective linker incorporation into the framework.