Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anim Genet ; 49(4): 284-290, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29932470

RESUMO

Loss-of-function variants in the MC1R gene cause recessive red or yellow coat-colour phenotypes in many species. The canine MC1R:c.916C>T (p.Arg306Ter) variant is widespread and found in a homozygous state in many uniformly yellow- or red-coloured dogs. We investigated cream-coloured Australian Cattle Dogs whose coat colour could not be explained by this variant. A genome-wide association study with 10 cream and 123 red Australian Cattle Dogs confirmed that the cream locus indeed maps to MC1R. Whole-genome sequencing of cream dogs revealed a single nucleotide variant within the MITF binding site of the canine MC1R promoter. We propose to designate the mutant alleles at MC1R:c.916C>T as e1 and at the new promoter variant as e2 . Both alleles segregate in the Australian Cattle Dog breed. When we considered both alleles in combination, we observed perfect association between the MC1R genotypes and the cream coat colour phenotype in a cohort of 10 cases and 324 control dogs. Analysis of the MC1R transcript levels in an e1 /e2 compound heterozygous dog confirmed that the transcript levels of the e2 allele were markedly reduced with respect to the e1 allele. We further report another MC1R loss-of-function allele in Alaskan and Siberian Huskies caused by a 2-bp deletion in the coding sequence, MC1R:c.816_817delCT. We propose to term this allele e3 . Huskies that carry two copies of MC1R loss-of-function alleles have a white coat colour.


Assuntos
Cães/genética , Cor de Cabelo/genética , Receptor Tipo 1 de Melanocortina/genética , Alelos , Animais , Austrália , Cruzamento , Estudos de Associação Genética/veterinária , Genótipo , Fenótipo , Regiões Promotoras Genéticas , Análise de Sequência de DNA
2.
Anim Genet ; 48(4): 483-485, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28444912

RESUMO

White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses.


Assuntos
Cor de Cabelo/genética , Cavalos/genética , Proteínas Proto-Oncogênicas c-kit/genética , Deleção de Sequência , Alelos , Animais , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA