RESUMO
Color-tunable actuators with motion and color-changing functions have attracted considerable attention in recent years, yet it remains a challenge to achieve the autonomous regulation of motion and color. Inspired by Apatura ilia butterfly with dynamic structural color and Pelargonium carnosum plant with moisture responsive bilayer structure, an automatic color-tunable actuator is developed by integrating photonic crystals layer and hygroscopic layer. Taking advantage of the asymmetric hygroscopicity between two layers and the angle-dependent structural color of photonic crystals, this actuator can continuously self-flicker in humid environment by visual switching in structural color due to automated cyclic motion. The actuator is assembled into the self-flapping biomimetic butterfly with switchable color and the self-reporting information array with dynamic visual display, demonstrating its autoregulatory motion and color. This work provides a new strategy for developing automatic color-tunable actuator and suggests its potential in the intelligent robot and optical display.
RESUMO
Klebsiella pneumoniae is a common, conditionally pathogenic bacterium that often has a multidrug-resistant phenotype, leading to failure of antibiotic therapies. It can therefore induce serious diseases, including community-acquired pneumonia and bloodstream infections. As an emerging alternative to antibiotics, phages are considered key to solving the problem of drug-resistant bacterial infections. Here, we report a novel phage, pK3-24, that mainly targets ST447 K. pneumoniae. Phage pK3-24 is a T7-like short-tailed phage with a fast adsorption capacity that forms translucent plaques with halos on bacterial lawns. The optimal multiplicity of infection (MOI) is 0.01, and the average burst size is 50 PFU/mL. Phage pK3-24 shows environmental stability, surviving at below 50 °C and at pH values of 6-10. It has a double-stranded DNA genome of 40,327 bp and carries no antibiotic-resistance, virulence, or lysogeny genes. Phylogenetic analysis assigned phage pK3-24 to the genus Przondovirus as a new species. Phage pK3-24 inhibited the production of biofilm. Moreover, treatment with pK3-24 at doses with an MOI > 1 effectively reduced the mortality of Galleria mellonella larvae infected with ST447 K. pneumoniae.
RESUMO
SCOPE: Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats. METHODS AND RESULTS: After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of Lactobacillus animalis and Lactobacillus johnsonii are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression. CONCLUSION: AP, as a natural and safe active substance, has a positive effect in the treatment of depression.
RESUMO
Thermoplastic composites are gaining widespread application in aerospace and other industries due to their superior durability, excellent damage resistance, and recyclability compared to thermosetting materials. This study aims to enhance the lap shear strength (LSS) of resistance-welded GF/PP (glass fiber-reinforced polypropylene) thermoplastic composites by modifying stainless steel mesh (SSM) heating elements using a silane coupling agent. The influence of oxidation temperature, solvent properties, and solution pH on the LSS of the welded joints was systematically evaluated. Furthermore, scanning electron microscopy (SEM) was utilized to investigate the SSM surface and assess improvements in interfacial adhesion. The findings indicate that surface treatment promotes increased resin infiltration into the SSM, thereby enhancing the LSS of the resistance-welded joints. Treatment under optimal conditions (500 °C, ethanol solvent, and pH 11) improved LSS by 27.2% compared to untreated joints.
RESUMO
Sturgeons (Acipenseridae), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2-7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (P < 0.001).Additionally, western blotting confirmed that F2-7 enhances immune response by increasing the expression of P-IKKα/ß, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (P < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (-2.75 and -1.64; -6.04 and -4.75 kcal/mol), thus establishing their role as key immune peptides in F2-7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.
RESUMO
Zinc is an essential trace element, and impaired zinc homeostasis may be associated with inflammation in patients with diabetic nephropathy (DN). We investigated the influence of zinc level on nod-like receptor nucleotide-binding domain and leucine-rich repeat pyrin-3 domain (NLRP3) inflammasome expression and renal prognosis in patients with DN. We recruited 90 patients definitively diagnosed with DN by renal biopsy and 40 healthy controls. Zinc, NLRP3, interleukin (IL)-1ß, and IL-18 levels were detected in blood samples, and the correlations between these parameters were assessed. Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) evaluated the predictive value of zinc and the NLRP3 inflammasome for DN. Furthermore, patients with DN were divided into low- and normal-zinc groups to observe differences in clinical indicators and identify expression of inflammatory-related factors in renal tissue. Kaplan-Meier survival curves predicted the impact of zinc levels on renal prognosis. We found that the plasma zinc concentration in patients with DN was lower, while NLRP3, IL-1ß, and IL-18 levels were higher than were those in patients without DN (P < 0.05). Zinc level was negatively correlated with NLRP3, IL-1ß, and IL-18 levels (P < 0.01). Zinc and the NLRP3 inflammasome were predictive of DN, but their combination improved the diagnostic value. The DCA curve demonstrated a good positive net benefit in the combined model. Compared to patients with low zinc levels, patients with normal zinc levels had lower expression of NLRP3 inflammasome and a better prognosis. Zinc has a protective effect on DN and may affect NLRP3 inflammasome activation.
RESUMO
OBJECTIVE: This study aimed to reveal the role and mechanism of MG-132 in delaying hyperlipidemia-induced senescence of vascular smooth muscle cells (VSMCs). METHODS: Immunohistochemistry and hematoxylin-eosin staining confirmed the therapeutic effect of MG-132 on arterial senescence in vivo and its possible mechanism. Subsequently, VSMCs were treated with sodium palmitate (PA), an activator (Recilisib) or an inhibitor (Pictilisib) to activate or inhibit PI3K, and CCK-8 and EdU staining, wound healing assays, Transwell cell migration assays, autophagy staining assays, reactive oxygen species assays, senescence-associated ß-galactosidase staining, and Western blotting were performed to determine the molecular mechanism by which MG-132 inhibits VSMC senescence. Validation of the interaction between MG-132 and PI3K using molecular docking. RESULTS: Increased expression of p-PI3K, a key protein of the autophagy regulatory system, and decreased expression of the autophagy-associated proteins Beclin 1 and ULK1 were observed in the aortas of C57BL/6J mice fed a high-fat diet (HFD), and autophagy was inhibited in aortic smooth muscle. MG-132 inhibits atherosclerosis by activating autophagy in VSMCs to counteract PA-induced cell proliferation, migration, oxidative stress, and senescence, thereby inhibiting VSMC senescence in the aorta. This process is achieved through the PI3K/AKT/mTOR signaling pathway. CONCLUSION: MG-132 activates autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby inhibiting palmitate-induced proliferation, migration, and oxidative stress in vascular smooth muscle cells and suppressing their senescence.
Assuntos
Autofagia , Senescência Celular , Leupeptinas , Músculo Liso Vascular , Miócitos de Músculo Liso , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Autofagia/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Leupeptinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Ácido Palmítico/farmacologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversosRESUMO
Renal fibrosis is a common pathway involved in the progression of various chronic kidney to end-stage diseases, posing a substantial global public health challenge in the search for effective and safe treatments. This study investigated the effects and mechanisms of sacha inchi shell polysaccharide (SISP) on renal fibrosis induced by a high-salt diet (HSD) in mice. By analysing kidney-related protein pathways and the structure of gut microbiota, we found that SISP significantly reduced urinary protein levels induced by a HSD from 41.08 to 22.95 µg/mL and increased urinary creatinine from 787.43 to 1294.50 µmol/L. It reduced renal interstitial collagen fibres by 11.30 %, thereby improving the kidney function. SISP lowered the mRNA expression of TGF-B1, fibronectin, α-SMA, Smad2/3, and TGFBRII, leading to decreased protein levels of TGF-ß1, p-Smad2/3, p-TGFßRII, fibronectin, α-SMA, p-Smad2/3/Smad2/3, and p-TGFßRII/TGFßRII. These changes blocked downstream transcription in the TGF-ß1/Smad signalling pathway, thereby attenuating renal fibrosis in HSD mice. In addition, SISP altered the intestinal flora imbalance in HSD mice by reducing the relative abundance of the genera, Akkermansia, Faecalibaculum, and unidentified_Ruminococcaceae, and reversing the decline in the levels of the genera, Lactobacillus and Bacteroides. In conclusion, SISP is a promising nutraceutical for renal fibrosis management.
RESUMO
The use of Generally Recognized as Safe (GRAS)-grade microbial cell factories to produce recombinant protein-based nutritional products is a promising trend in developing food and health supplements. In this study, GRAS-grade Kluyveromyces marxianus was employed to express recombinant human heavy-chain ferritin (rhFTH), achieving a yield of 11 g/L in a 5 L fermenter, marking the highest yield reported for ferritin nanoparticle proteins to our knowledge. The rhFTH formed 12 nm spherical nanocages capable of ferroxidase activity, which involves converting Fe2+ to Fe3+ for storage. The rhFTH-containing yeast cell lysates promoted cytokine secretion (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1ß (IL-1ß)) and enhanced locomotion, pharyngeal pumping frequency, egg-laying capacity, and lifespan under heat and oxidative stress in the RAW264.7 mouse cell line and the C. elegans model, respectively, whereas yeast cell lysate alone had no such effects. These findings suggest that rhFTH boosts immunity, holding promise for developing ferritin-based food and nutritional products and suggesting its adjuvant potential for clinical applications of ferritin-based nanomedicine. The high-yield production of ferritin nanoparticles in K. marxianus offers a valuable source of ferritin for the development of ferritin-based products.
RESUMO
This study aimed to investigate the ameliorating effects of peach blossom soluble dietary fiber (PBSDF) and polyphenol (PBP) combinations on loperamide (Lop)-induced constipation in mice, together with the possible mechanism of action. The results demonstrated that the combined use of PBSDF and PBP could synergistically accelerate the gastrointestinal transit rate and gastric emptying rate, shorten first red fecal defecation time, accelerate the frequency of defecation, regulate the abnormal secretion of gastrointestinal neurotransmitters and pro-inflammatory cytokines, and down-regulate the expressions of AQP3 and AQP8. Western blotting and RT-qPCR analysis confirmed that PBSDF + PBP up-regulated the protein and mRNA expressions of SCF and C-kit in SCF/C-kit signaling pathway, and down-regulated pro-inflammatory mediator expressions in NF-κB signaling pathway. 16S rRNA sequencing showed that the diversity of gut microbiota and the relative abundance of specific strains, including Akkermansia, Bacteroides, Ruminococcus, Lachnospiraceae_NK4A136_group, and Turicibacter, rehabilitated after PBSDF + PBP intervention. These findings suggested that the combination of a certain dose of PBSDF and PBP had a synergistic effect on attenuating Lop-induced constipation, and the synergistic mechanism in improving constipation might associated with the regulating NF-κB and SCF/C-kit signaling pathway, and modulating the specific gut strains on constipation-related systemic types. The present study provided a novel strategy via dietary fiber and polyphenol interactions for the treatment of constipation.
Assuntos
Constipação Intestinal , Fibras na Dieta , Microbioma Gastrointestinal , Loperamida , NF-kappa B , Polifenóis , Proteínas Proto-Oncogênicas c-kit , Prunus persica , Transdução de Sinais , Fator de Células-Tronco , Animais , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Polifenóis/farmacologia , NF-kappa B/metabolismo , Fator de Células-Tronco/metabolismo , Masculino , Prunus persica/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Aquaporina 3/metabolismo , Aquaporina 3/genética , Trânsito Gastrointestinal/efeitos dos fármacos , Modelos Animais de DoençasRESUMO
Herpes simplex virus-2 encephalitis (HSV2E) in immunocompetent adults is exceptionally rare, and the subsequent onset of autoimmune encephalitis after HSV2E is even less common. This report presents the inaugural Chinese case of anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) induced by HSV2E, confirmed via metagenomic next-generation sequencing (mNGS). The patient demonstrated a favorable response to intravenous immunoglobulin (IVIG) monotherapy. This case emphasizes the importance of considering autoimmune encephalitis in patients exhibiting new or recurrent neurological symptoms after HSV2E recovery. Comprehensive mNGS and neuronal antibody testing are essential for timely diagnosis. Moreover, IVIG monotherapy can serve as an effective treatment for NMDARE induced by HSV2, providing a viable alternative, particularly when steroid therapy is contraindicated.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Encefalite por Herpes Simples , Herpesvirus Humano 2 , Imunoglobulinas Intravenosas , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/tratamento farmacológico , Encefalite Antirreceptor de N-Metil-D-Aspartato/virologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/imunologia , Imunoglobulinas Intravenosas/uso terapêutico , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/genética , Encefalite por Herpes Simples/tratamento farmacológico , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/virologia , Masculino , Resultado do Tratamento , Feminino , AdultoRESUMO
We collected respiratory specimens from 128 pediatric patients diagnosed with pneumonia in Beijing in late 2023. Mycoplasma pneumoniae was detected in 77.3% (99/128) patients, with 36.4% (4/11), 82.9% (34/41), 80.3% (61/76) in children aged less than 3 years, 3-6 years, over 7 years, respectively. Mycoplasma pneumoniae (M. pneumoniae) was characterized using P1 gene typing, MLVA typing and sequencing of domain V of the 23S rRNA gene. P1 gene type 1 (P1-1; 76.1%, 54/71) and MLVA type 4-5-7-2 (73.7%, 73/99) were predominant. MLVA identified a new genotype: 3-4-6-2. Macrolide resistance-associated mutations were detected in 100% of samples, with A2063G accounting for 99% and A2064G for 1%. The positive rate of M. pneumoniae was higher compared to previous reports, especially in children less than 3 years, suggesting a M. pneumoniae epidemic showing a younger age trend occurred in late 2023 in Beijing, China. Higher proportions of macrolide-resistant M. pneumoniae, P1-1 and 4-5-7-2 genotype M. pneumoniae indicated increased macrolide resistance rate and genotyping shift phenomenon, which might be attributable to this epidemic. Additionally, complete clinical information from 73 M. pneumoniae pneumonia inpatients were analyzed. The incidence of severe M. pneumoniae pneumonia was 56.2% (41/73). Mycoplasma pneumoniae pneumonia patients exhibited longer duration of fever, with a median value of 10.0 days (IQR, 8.0-13.0), and higher incidence of complications (74.0%, 54/73). However, in this cohort, we found that the severity of M. pneumoniae pneumonia, co-infection, or complications were not associated with M. pneumoniae P1 gene or MLVA types. Clinicians should be aware that patients infected with macrolide-resistant M. pneumoniae exhibited more severe clinical presentations.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale Kimura et Migo as a valuable Chinese medicine has been used in China for more than 2000 years. Its main active components, polysaccharide (DOP), has been reported to have various pharmacological effects, including anti-inflammatory, antioxidant and alleviating AD effects. However, the precise mechanism underlying its therapeutic effect in AD remains largely unclear. AIM OF THE STUDY: The present study sought to assess the efficacy of DOP and elucidate its intricate mechanisms in ameliorating DNFB-induced AD. MATERIALS AND METHODS: Mice were sensitized with DNFB and treated with DOP application for 14 days. Treatment effects were assessed using dermatitis scores, ear thickness and scratching frequency. Epidermal thickness, mast cells and CD4+ T cells infiltration were detected by using H&E, toluidine blue staining and immunofluorescence staining respectively. Serum histamine (HIS), immunoglobulin E (IgE), thymic stromal lymphopoietin (TSLP), skin SOD, MDA, GHS, CAT, inflammatory cytokines (TNF-α, IFN-γ, IL-1ß, IL-4, IL-5, IL-13) and chemokine (MIP-α, MDC, MCP-1) levels were quantify by ELISA and immunohistochemistry. Additionally, qPCR and Western blot analyses were performed to assess genes and proteins expression associated with MAPK/NF-κB/STAT3 signaling pathway. RESULTS: The results indicated that DOP effectively mitigated AD-like skin lesions in mice through multiple pathways. It reduced epidermal thickness, ear thickness and scratching frequency in AD mice. Additionally, DOP mitigated inflammatory responses by decreasing the levels of inflammatory factors, as well as reducing serum levels of IgE, HIS, and TSLP. Moreover, DOP inhibited infiltration of mast cells and CD4+ T cells, suppressed the expression of skin chemokines such as MDC, MCP-1, and MIP-α, and enhanced filaggrin content in AD mice. Furthermore, DOP significantly boosted antioxidant capacity, as well as significantly reduced the expression of JAK1, STAT3, NF-κB p65, IκBα, ERK1/2, and p38 proteins and phosphorylated proteins such as p-JAK1, p-STAT3, p-NF-κB p65, p-IκBα, p-ERK1/2, and p-p38. CONCLUSIONS: These findings suggested that DOP has significant anti-AD activity, primarily through reducing inflammatory responses, improving antioxidant capacity, repairing the skin barrier, and down-regulating key genes and proteins in MAPK/NF-κB/STAT3 signaling pathway, and that this study may provide valuable insights into the development of innovative therapies for the treatment of AD.
Assuntos
Citocinas , Dendrobium , Dermatite Atópica , NF-kappa B , Polissacarídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Dermatite Atópica/tratamento farmacológico , Dendrobium/química , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Mastócitos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Modelos Animais de DoençasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Valeriana officinalis L., commonly known as "valerian", is a traditional herbal medicine distributed in the north temperate zones of America, Europe and Asia. In traditional Chinese medicine, valerian and its roots were used for the treatment of restlessness of the heart and mind, palpitation and insomnia caused by internal depression of emotions and moods. However, safety evaluation of valerian remains deeply unclear. AIM OF THE STUDY: This study aimed to evaluate the genotoxicity, 14-days acute oral toxicity test, 90-day subchronic oral toxicity test and teratogenicity test of aqueous extract of valerian root (AEVR). MATERIALS AND METHODS: The genotoxicity of AEVR was evaluated with bacterial reverse mutation, mouse erythrocyte micronucleus test and in vitro mammalian cell chromosome aberration test. In the 14-days acute toxicity study, Kunming mice were administered at a dosage of 96 g/kg body weigh by gavage. In the 90-day subchronic toxicity study, Sprague-Dawley rats received oral doses of 0, 3.5, 7 and 14 g/kg body weight of AEVR. In the teratogenicity study, pregnant Sprague-Dawley rats received a dose of 0, 3.5, 7 and 14 g/kg body weight of AEVR. RESULTS: AEVR did not show any genotoxicity based on the bacterial reverse mutation, mouse erythrocyte micronucleus test and in vitro mammalian cell chromosome aberration test. In the acute toxicity study, AEVR at a dose of 96 g/kg body weight did not cause death or abnormal behavior in male or female mice. In the subchronic toxicity study, at the doses of 0, 3.5, 7, 14 g/kg body weight, no dose-related effects on clinical observation, body weight, organ weight, hematology, serum biochemistry and urinalysis of AEVR were detected in male or female rats. Teratogenicity test shown that there were no significant toxicologically changes in embryonic formation, body weight of pregnant rats, external, skeletal and visceral examination observed in pregnant and fetal rats at the dosage of 0, 3.5, 7, 14 g/kg body weight. CONCLUSION: In vivo or in vitro assays demonstrated that AEVR does not exhibit genotoxicity. The LD50 of AEVR was greater than 96 g/kg body weight in both sex of mice according to acute oral toxicity study. Subchronic toxicity and teratogenicity tests showed that the no observed adverse effect level (NOAEL) of AEVR was no less than 14 g/kg body weight. This study established a non-toxic dose of AEVR, providing a foundation for the use of valerian as a new resource food in some countries and regions.
Assuntos
Testes de Mutagenicidade , Extratos Vegetais , Raízes de Plantas , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica , Valeriana , Animais , Masculino , Feminino , Extratos Vegetais/toxicidade , Extratos Vegetais/administração & dosagem , Valeriana/química , Camundongos , Aberrações Cromossômicas , Ratos , Testes para Micronúcleos , Relação Dose-Resposta a Droga , Cricetulus , Gravidez , Células CHO , Animais não EndogâmicosRESUMO
Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.
Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Miosite , Receptores de Antígenos Quiméricos , Escleroderma Sistêmico , Humanos , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Miosite/terapia , Miosite/imunologia , Escleroderma Sistêmico/terapia , Escleroderma Sistêmico/imunologia , Imunoterapia Adotiva/métodos , Feminino , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transplante HomólogoRESUMO
Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.
Assuntos
Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Antibacterianos/farmacologia , Temperatura , Álcoois/metabolismo , Álcoois/farmacologiaRESUMO
Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1ß and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.
Assuntos
Anti-Inflamatórios , Citocinas , Dermatite Atópica , Proteínas Filagrinas , Imunoglobulina E , Mastócitos , Pele , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Citocinas/metabolismo , Proteínas Filagrinas/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Imunoglobulina E/sangue , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Óleos de Plantas/uso terapêutico , Óleos de Plantas/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linfopoietina do Estroma do Timo , Histamina/metabolismo , Histamina/sangue , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Humanos , FemininoRESUMO
Bacterial infections caused by multidrug-resistant (MDR) gram-negative strains carrying the mobile colistin resistance gene mcr-1 are serious threats to world public health due to the lack of effective treatments. Inhibition of the ATP synthase makes bacteria such as Staphylococcus aureus and Klebsiella pneumoniae more sensitive to polymyxin. This provides new strategies for treating infections caused by polymyxins-resistant bacteria carrying mcr-1. Six mcr-1-positive strains were isolated from clinical samples, and all were identified as Escherichia coli. Here we investigated several ATP synthase inhibitors, N,N'-dicyclohexylcarbodiimide (DCCD), resveratrol, and piceatannol, for their antibacterial effects against the mcr-1-positive strains combined with polymyxin B (POL). Checkerboard assay, time-kill assay, biofilm inhibition and eradication assay indicated the significant synergistic effect of ATP synthase inhibitors/POL combination in vitro. Meanwhile, mouse infection model experiment was also performed, showing a 5 log10 reduction of the pathogen after treatment with the resveratrol/POL combination. Moreover, adding adenosine disodium triphosphate (Na2ATP) could inhibit the antibacterial effect of the ATP synthase inhibitors/POL combination. In conclusion, our study confirmed that inhibition of ATP production could increase the susceptibility of bacteria carrying mcr-1 to polymyxins. This provides a new strategy against polymyxins-resistant bacteria infection.
Assuntos
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Polimixina B , Polimixina B/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Animais , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Camundongos , Resveratrol/farmacologia , Trifosfato de Adenosina/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Biofilmes/efeitos dos fármacos , Sinergismo Farmacológico , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , FemininoRESUMO
Organophosphorus compounds (OPs) are widely used as flame retardants (FRs) and plasticizers, yet strategies for comprehensively screening of suspect OPs in environmental samples are still lacking. In this work, a neoteric, robust, and general suspect screening technique was developed to identify novel chemical exposures by use of ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). We firstly established a suspect chemical database which had 7,922 OPs with 4,686 molecular formulas, and then conducted suspect screening in n = 50 indoor dust samples, n = 76 sediment samples, and n = 111 water samples. By use of scoring criteria such as retention time prediction models, we successfully confirmed five compounds by comparison with their authentic standards, and prioritized three OPs candidates including a nitrogen/fluorine-containing compound, that is dimethyl {1H-indol-3-yl[3-(trifluoromethyl)anilino]methyl} phosphonate (DMITFMAMP). Given that the biodegradation half-life values in water (t1/2,w) of DMITFMAMP calculated by EPI Suite is 180 d, it is considered to be potentially persistent. This strategy shows promising potential in environmental pollution assessment, and can be expected to be widely used in future research.
Assuntos
Monitoramento Ambiental , Retardadores de Chama , Compostos Organofosforados , Compostos Organofosforados/análise , Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Poeira/análise , Cromatografia Líquida de Alta Pressão , Poluentes Ambientais/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Espectrometria de Massas/métodosRESUMO
The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.