RESUMO
A biocatalytic approach for the synthesis of metaxalone and its analogues was developed based on the reaction of epoxides and cyanate catalyzed by halohydrin dehalogenase. Gram-scale synthesis of chiral and racemic metaxalone was achieved with 44% (98% ee) and 81% yields, respectively, by protein engineering of the halohydrin dehalogenase HHDHamb from Acidimicrobiia bacterium. Additionally, various metaxalone analogues were synthesized at 28-40% yields (90-99% ee) for chiral forms and 77-92% yields for racemic forms.
Assuntos
Oxazolidinonas , Engenharia de Proteínas , Biocatálise , BactériasRESUMO
Enantiopure ß-nitroalcohols, as an important class of nitro-containing compounds, are essential building blocks in pharmaceutical and organic chemistry, particularly for the synthesis of ß-adrenergic blockers. In this study, we present the successful protein engineering of halohydrin dehalogenase HHDHamb for the enantioselective bio-nitration of various phenyl glycidyl ethers to the corresponding chiral ß-nitroalcohols, using the inexpensive, commercially available, and safer nitrite as a nitrating agent. The chiral (R)- and (S)-1-nitro-3-phenoxypropan-2-ols were synthesized by the several enantiocomplementary HHDHamb variants through the whole-cell biotransformation, which showed good catalytic efficiency (up to 43% isolated yields) and high optical purity (up to >99% ee). In addition, we also demonstrated that the bio-nitration method was able to tolerate the substrate at a high concentration of 1000 mM (150 g/L). Furthermore, representative synthesis of two optically active enantiomers of the ß-adrenergic blocker metoprolol was successfully achieved by utilizing the corresponding chiral ß-nitroalcohols as precursors.