RESUMO
Palladium-catalyzed reactions are among the most commonly used procedures in organic synthesis. The products have a range of uses, including as intermediates in total synthesis and as screening compounds for drug discovery or agrochemical projects. Despite the known and potentially deleterious effects of low-level metal impurities in biological assays, the quantification of metal remaining in reaction products to verify the effective removal of the transition element is rarely reported. Using palladium as an exemplar, we describe a pilot study that for the first time quantifies residual metal levels in reaction products following increasingly rigorous purification protocols. Our results demonstrate that significant levels of residual palladium can remain in isolated reaction products following chromatographic purification, and only by using a subsequent metal scavenging step are they reliably reduced to a low level. Finally, we provide a set of simple guidelines that should minimize the potential for issues associated with residual palladium in reaction products.
RESUMO
Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-ß-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential ß-lactamase stable ß-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.
Assuntos
Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/metabolismo , Animais , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Ligação Proteica , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/metabolismoRESUMO
A method to enable the synthesis of conduramines and their N-substituted derivatives (enantiopure or racemic form) in six steps (five steps for N-substituted derivatives) from cyclohexa-1,4-diene is reported. Key features of this reaction sequence include a preparation of benzene oxide that is amenable to multigram scale, and its efficient ring-opening upon treatment with a primary amine. Epoxidation of the resultant amino alcohols (40% aq HBF4 then m-CPBA) is accompanied by hydrolytic ring-opening in situ to give the corresponding N-substituted conduramine derivatives directly. These may undergo subsequent N-deprotection to give the parent conduramines, as demonstrated by the preparation of enantiopure (-)-conduramine A1, (-)-conduramine A2, and (-)-conduramine E2 (the latter two for the first time). The selectivity of the epoxidation reaction is proposed to be the result of competitive ammonium-directed and hydroxyl-directed epoxidation processes, followed by either direct (SN2-type) or conjugate (SN2'-type) ring-openings of the intermediate epoxides.
RESUMO
Epoxidations (40% aq HBF4 then m-CPBA) of racemic cis-2-( N-benzylamino)cyclohex-3-en-1-ol and racemic cis-2-( N, N-dibenzylamino)cyclohex-3-en-1-ol proceed with very high levels of diastereoselectivity (>95:5 dr). The latter is in direct contrast to the epoxidation of the corresponding trans-diastereoisomer (which proceeds with essentially no selectivity), showing that the relative configuration of the substrate dramatically influences the diastereoselectivity in these instances. Meanwhile, epoxidations of enantiopure (1 R,2 S,α R)-2-[( N-α-methylbenzyl)amino]cyclohex-3-en-1-ol and (1 S,2 R,α R)-2-[( N-α-methylbenzyl)amino]cyclohex-3-en-1-ol [surrogates for the enantiomers of cis-2-( N-benzylamino)cyclohex-3-en-1-ol] proceed with complete diastereoselectivity (>95:5 dr) under the same conditions, showing that neither the presence of the α-methyl group nor the relative configuration of the α-methylbenzyl stereocenter have an effect upon the established level of diastereoslectivity in these cases. In contrast, epoxidations of enantiopure (1 R,2 S,α R)-2-[ N-benzyl- N-(α-methylbenzyl)amino]cyclohex-3-en-1-ol and (1 S,2 R,α R)-2-[ N-benzyl- N-(α-methylbenzyl)amino]cyclohex-3-en-1-ol [surrogates for the enantiomers of cis-2-( N, N-dibenzylamino)cyclohex-3-en-1-ol] proceed with lower diastereoselectivity (â¼70:30 dr). Thus, the presence of the α-methyl group has a detrimental effect on the established level of diastereoselectivity in these cases (although again the relative configuration of the α-methylbenzyl stereocenter is unimportant). The diastereoselective epoxidation pathway is used to enable the asymmetric syntheses of six hitherto unknown, enantiopure dihydroconduramines (+)-C-2, (-)-C-2, (+)-D-2, (+)-E-2, (+)-F-2, and (-)-F-2 (>99% ee in each case).