Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712299

RESUMO

Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.

2.
J Mol Evol ; 92(2): 93-103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416218

RESUMO

Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.


Assuntos
Opsinas dos Cones , Animais , Opsinas dos Cones/genética , Filogenia , Opsinas/genética , Peixes/genética , Evolução Molecular
3.
Sci Adv ; 9(2): eadd2743, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630509

RESUMO

Longevity is a defining, heritable trait that varies dramatically between species. To resolve the genetic regulation of this trait, we have mined genomic variation in rockfishes, which range in longevity from 11 to over 205 years. Multiple shifts in rockfish longevity have occurred independently and in a short evolutionary time frame, thus empowering convergence analyses. Our analyses reveal a common network of genes under convergent evolution, encompassing established aging regulators such as insulin signaling, yet also identify flavonoid (aryl-hydrocarbon) metabolism as a pathway modulating longevity. The selective pressures on these pathways indicate the ancestral state of rockfishes was long lived and that the changes in short-lived lineages are adaptive. These pathways were also used to explore genome-wide association studies of human longevity, identifying the aryl-hydrocarbon metabolism pathway to be significantly associated with human survival to the 99th percentile. This evolutionary intersection defines and cross-validates a previously unappreciated genetic architecture that associates with the evolution of longevity across vertebrates.


Assuntos
Longevidade , Perciformes , Animais , Humanos , Longevidade/genética , Estudo de Associação Genômica Ampla , Envelhecimento/genética , Perciformes/genética , Genômica
4.
Annu Rev Anim Biosci ; 10: 39-62, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748709

RESUMO

Antarctic notothenioid fishes are the classic example of vertebrate adaptive radiation in a marine environment. Notothenioids diversified from a single common ancestor ∼22 Mya to between 120 and 140 species today, and they represent ∼90% of fish biomass on the continental shelf of Antarctica. As they diversified in the cold Southern Ocean, notothenioids evolved numerous traits, including osteopenia, anemia, cardiomegaly, dyslipidemia, and aglomerular kidneys, that are beneficial or tolerated in their environment but are pathological in humans. Thus, notothenioids are models for understanding adaptive radiations, physiological and biochemical adaptations to extreme environments, and genetic mechanisms of human disease. Since 2014, 16 notothenioid genomes have been published, which enable a first-pass holistic analysis of the notothenioid radiation and the genetic underpinnings of novel notothenioid traits. Here, we review the notothenioid radiation from a genomic perspective and integrate our insights with recent observations from other fish radiations.


Assuntos
Peixes , Genoma , Animais , Regiões Antárticas , Peixes/genética , Genoma/genética , Genômica , Filogenia
5.
Curr Biol ; 31(22): 5052-5061.e8, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34534441

RESUMO

Changes to allometry, or the relative proportions of organs and tissues within organisms, is a common means for adaptive character change in evolution. However, little is understood about how relative size is specified during development and shaped during evolution. Here, through a phylogenomic analysis of genome-wide variation in 35 species of flying fishes and relatives, we identify genetic signatures in both coding and regulatory regions underlying the convergent evolution of increased paired fin size and aerial gliding behaviors. To refine our analysis, we intersected convergent phylogenomic signatures with mutants with altered fin size identified in distantly related zebrafish. Through these paired approaches, we identify a surprising role for an L-type amino acid transporter, lat4a, and the potassium channel, kcnh2a, in the regulation of fin proportion. We show that interaction between these genetic loci in zebrafish closely phenocopies the observed fin proportions of flying fishes. The congruence of experimental and phylogenomic findings point to conserved, non-canonical signaling integrating bioelectric cues and amino acid transport in the establishment of relative size in development and evolution.


Assuntos
Nadadeiras de Animais , Peixe-Zebra , Nadadeiras de Animais/fisiologia , Animais , Evolução Biológica , Sinais (Psicologia) , Evolução Molecular , Peixes/genética , Filogenia , Proteínas de Peixe-Zebra/metabolismo
6.
Mol Biol Evol ; 38(11): 5190-5203, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34324001

RESUMO

The quest to map the genetic foundations of phenotypes has been empowered by the modern diversity, quality, and availability of genomic resources. Despite these expanding resources, the abundance of variation within lineages makes it challenging to associate genetic change to specific phenotypes, without an a priori means of isolating the changes from background genomic variation. Evolution provides this means through convergence-that is, the shared variation that may result from replicate evolutionary experiments across independent trait occurrences. To leverage these opportunities, we developed TRACCER: Topologically Ranked Analysis of Convergence via Comparative Evolutionary Rates. Compared to current methods, this software empowers rate convergence analysis by factoring in topological relationships, because genetic variation between phylogenetically proximate trait changes is more likely to be facilitating the trait. Comparisons are performed not with singular branches, but with the complete paths to the most recent common ancestor for each pair of lineages. This ensures that comparisons represent a single context diverging over the same timeframe while obviating the problematic requirement of assigning ancestral states. We applied TRACCER to two case studies: mammalian transitions to marine environments, an unambiguous collection of traits that have independently evolved three times; and the evolution of mammalian longevity, a less delineated trait but with more instances to compare. By factoring in topology, TRACCER identifies highly significant, convergent genetic signals, with important incongruities and statistical resolution when compared to existing approaches. These improvements in sensitivity and specificity of convergence analysis generate refined targets for downstream validation and identification of genotype-phenotype relationships.


Assuntos
Longevidade , Mamíferos , Animais , Evolução Biológica , Evolução Molecular , Genoma , Longevidade/genética , Mamíferos/genética , Fenótipo , Filogenia
7.
Wiley Interdiscip Rev Dev Biol ; 10(4): e381, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32323915

RESUMO

Faithful establishment and maintenance of proportion is seen across biological systems and provides a glimpse at fundamental rules of scaling that underlie development and evolution. Dysregulation of proportion is observed in a range of human diseases and growth disorders, indicating that proper scaling is an essential component of normal anatomy and physiology. However, when viewed through an evolutionary lens, shifts in the regulation of relative proportion are one of the most striking sources of morphological diversity among organisms. To date, the mechanisms via which relative proportion is specified and maintained remain unclear. Through the application of powerful experimental, genetic and molecular approaches, the teleost fin has provided an effective model to investigate the regulation of scaling, size, and relative growth in vertebrate organisms. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Regulation of Organ Diversity.


Assuntos
Nadadeiras de Animais/fisiologia , Tamanho Corporal , Nadadeiras de Animais/citologia , Animais , Peixes
8.
PLoS Genet ; 16(10): e1009173, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33108368

RESUMO

In the frigid, oxygen-rich Southern Ocean (SO), Antarctic icefishes (Channichthyidae; Notothenioidei) evolved the ability to survive without producing erythrocytes and hemoglobin, the oxygen-transport system of virtually all vertebrates. Here, we integrate paleoclimate records with an extensive phylogenomic dataset of notothenioid fishes to understand the evolution of trait loss associated with climate change. In contrast to buoyancy adaptations in this clade, we find relaxed selection on the genetic regions controlling erythropoiesis evolved only after sustained cooling in the SO. This pattern is seen not only within icefishes but also occurred independently in other high-latitude notothenioids. We show that one species of the red-blooded dragonfish clade evolved a spherocytic anemia that phenocopies human patients with this disease via orthologous mutations. The genomic imprint of SO climate change is biased toward erythrocyte-associated conserved noncoding elements (CNEs) rather than to coding regions, which are largely preserved through pleiotropy. The drift in CNEs is specifically enriched near genes that are preferentially expressed late in erythropoiesis. Furthermore, we find that the hematopoietic marrow of icefish species retained proerythroblasts, which indicates that early erythroid development remains intact. Our results provide a framework for understanding the interactions between development and the genome in shaping the response of species to climate change.


Assuntos
Mudança Climática , Eritrócitos/metabolismo , Evolução Molecular , Peixes/genética , Animais , Regiões Antárticas , Peixes/metabolismo , Genoma/genética , Oceanos e Mares , Oxigênio/metabolismo
9.
Nat Ecol Evol ; 4(4): 659, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32157252

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Mar Genomics ; 49: 100724, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31735579

RESUMO

The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Peixes/genética , Globinas/genética , Sequência de Aminoácidos , Animais , Regiões Antárticas , Citoglobina/genética , Hemoglobinas/genética , Família Multigênica , Mioglobina/genética , Neuroglobina/genética , Sintenia
11.
Nat Ecol Evol ; 3(7): 1102-1109, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182814

RESUMO

Adaptive radiation illustrates links between ecological opportunity, natural selection and the generation of biodiversity. Central to adaptive radiation is the association between a diversifying lineage and the evolution of phenotypic variation that facilitates the use of new environments or resources. However, is not clear whether adaptive evolution or historical contingency is more important for the origin of key phenotypic traits in adaptive radiation. Here we use targeted sequencing of >250,000 loci across 46 species to examine hypotheses concerning the origin and diversification of key traits in the adaptive radiation of Antarctic notothenioid fishes. Contrary to expectations of adaptive evolution, we show that notothenioids experienced a punctuated burst of genomic diversification and evolved key skeletal modifications before the onset of polar conditions in the Southern Ocean. We show that diversifying selection in pathways associated with human skeletal dysplasias facilitates ecologically important variation in buoyancy among Antarctic notothenioid species, and demonstrate the sufficiency of altered trip11, col1a2 and col1a1a function in zebrafish (Danio rerio) to phenocopy skeletal reduction in Antarctic notothenioids. Rather than adaptation being driven by the cooling of the Antarctic, our results highlight the role of historical contingency in shaping the adaptive radiation of notothenioids. Understanding the historical and environmental context for the origin of key traits in adaptive radiations extends beyond reconstructing events that result in evolutionary innovation, as it also provides a context in forecasting the effects of climate change on the stability and evolvability of natural populations.


Assuntos
Adaptação Fisiológica , Peixes , Animais , Regiões Antárticas , Biodiversidade , Humanos , Filogenia
12.
Sci Rep ; 8(1): 10391, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991812

RESUMO

The establishment of relative size of organs and structures is paramount for attaining final form and function of an organism. Importantly, variation in the proportions of structures frequently underlies adaptive change in morphology in evolution and maybe a common mechanism underlying selection. However, the mechanism by which growth is integrated within tissues during development to achieve proper proportionality is poorly understood. We have shown that signaling by potassium channels mediates coordinated size regulation in zebrafish fins. Recently, calcineurin inhibitors were shown to elicit changes in zebrafish fin allometry as well. Here, we identify the potassium channel kcnk5b as a key player in integrating calcineurin's growth effects, in part through regulation of the cytoplasmic C-terminus of the channel. We propose that the interaction between Kcnk5b and calcineurin acts as a signaling node to regulate allometric growth. Importantly, we find that this regulation is epistatic to inherent mechanisms instructing overall size as inhibition of calcineurin is able to bypass genetic instruction of size as seen in sof and wild-type fins, however, it is not sufficient to re-specify positional memory of size of the fin. These findings integrate classic signaling mediators such as calcineurin with ion channel function in the regulation of size and proportion during growth.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Calcineurina/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Nadadeiras de Animais/anatomia & histologia , Animais , Padronização Corporal/genética , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regeneração/genética , Transdução de Sinais/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
Genetics ; 207(2): 609-623, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835471

RESUMO

Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.


Assuntos
Desenvolvimento Ósseo/genética , Genes Dominantes , Mutagênese , Pigmentação da Pele/genética , Peixe-Zebra/genética , Animais , Haplótipos , Fenótipo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
14.
Mol Biol Evol ; 33(1): 162-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26452532

RESUMO

The identification of genetic mechanisms underlying evolutionary change is critical to our understanding of natural diversity, but is presently limited by the lack of genetic and genomic resources for most species. Here, we present a new comparative genomic approach that can be applied to a broad taxonomic sampling of nonmodel species to investigate the genetic basis of evolutionary change. Using our analysis pipeline, we show that duplication and divergence of fgfr1a is correlated with the reduction of scales within fishes of the genus Phoxinellus. As a parallel genetic mechanism is observed in scale-reduction within independent lineages of cypriniforms, our finding exposes significant developmental constraint guiding morphological evolution. In addition, we identified fixed variation in fgf20a within Phoxinellus and demonstrated that combinatorial loss-of-function of fgfr1a and fgf20a within zebrafish phenocopies the evolved scalation pattern. Together, these findings reveal epistatic interactions between fgfr1a and fgf20a as a developmental mechanism regulating skeletal variation among fishes.


Assuntos
Evolução Biológica , Osso e Ossos/fisiologia , Mapeamento Cromossômico/métodos , Epistasia Genética/genética , Genômica/métodos , Animais , Filogenia , Peixe-Zebra/genética
15.
PLoS Genet ; 10(1): e1004080, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453984

RESUMO

The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K(+)) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K(+) conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K(+) ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K(+) channels in the regulation of allometric scaling and coordination of growth in the zebrafish.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Canais de Potássio/genética , Transdução de Sinais , Peixe-Zebra/genética , Animais , Mutação , Potássio/metabolismo , Canais de Potássio/metabolismo , Xenopus , Peixe-Zebra/crescimento & desenvolvimento
16.
Dev Dyn ; 240(9): 2175-93, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22016185

RESUMO

Although many fetal birth defects, particularly those of the body wall and gut, are associated with abnormalities of the umbilical cord, the developmental relationship between these structures is largely obscure. Recently, genetic analysis of mid-gestation mouse embryos revealed that defects in Hedgehog signaling led to omphalocoele, or failure of the body wall to close at the umbilical ring (Matsumaru et al. [ 2011] PLos One 6:e16260). However, systematic spatiotemporal localization of Hedgehog signaling in the allantois, or umbilical precursor tissue, and the surrounding regions has not been documented. Here, a combination of reagents, including the Ptc1:lacZ and Runx1:lacZ reporter mice, immunohistochemistry for Smoothened (Smo), Sonic Hedgehog (Shh), and Indian hedgehog (Ihh), and detailed PECAM-1/Flk-1/Runx-1 analysis, revealed robust Hedgehog signaling in previously undocumented posterior sites over an extended period of time (∼7.0-9.75 dpc). These included the recently described proximal walls of the allantois (Ventral and Dorsal Cuboidal Mesothelia; VCM and DCM, respectively); the ventral embryonic surface continuous with them; hemogenic arterial endothelia; hematopoietic cells; the hindgut; ventral ectodermal ridge (VER); chorionic ectoderm; and the intraplacental yolk sac (IPY), which appeared to be a site of placental hematopoiesis. This map of Hedgehog signaling in the posterior region of the mouse conceptus will provide a valuable foundation upon which to elucidate the origin of many posterior midline abnormalities, especially those of the umbilical cord and associated fetal defects. Developmental Dynamics 240:2175-2193, 2011. © 2011 Wiley-Liss, Inc.


Assuntos
Embrião de Mamíferos/metabolismo , Feto/fisiologia , Gástrula/metabolismo , Proteínas Hedgehog/metabolismo , Cordão Umbilical/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Mutantes , Morfogênese/genética , Morfogênese/fisiologia , Transdução de Sinais
17.
J Morphol ; 272(5): 536-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284019

RESUMO

The rodent allantois is thought to be unique amongst mammals in not having an endodermal component. Here, we have investigated the mesothelium, or outer surface, of murine umbilical precursor tissue, the allantois (∼7.25-8.5 days postcoitum, dpc) to discover whether it exhibits the properties of an epithelium. A combination of morphology, challenge with biotinylated dextran amines (BDAs), and immunohistochemistry revealed that the mesothelium of the mouse allantois exhibits distinct regional properties. By headfold stages (∼7.75-8.0 dpc), distal mesothelium was generally squamous in shape, and highly permeable to BDA challenge, whereas ventral proximal mesothelium, referred to as "ventral cuboidal mesothelium" (VCM) for the characteristic cuboidal shape of its cells, was relatively impermeable. Although "dorsal cuboidal mesothelium" (DCM) resembled the VCM in cell shape, its permeability to BDA was intermediate between the other two regions. Results of immunostaining for Zonula Occludens-1 (ZO-1) and Epithelial-cadherin (E-cadherin), together with transmission electron microscopy (TEM), suggested that impermeability in the VCM may be due to greater cellular contact area between cells and close packing rather than to maturity of tight junctions, the latter of which, by comparison with the visceral yolk sac, appeared to be rare or absent from the allantoic surface. Both VCM and DCM exhibited an ultrastructure more favorable for protein synthesis than did the distal squamous mesothelium; however, at most stages, VCM exhibited robust afadin (AF-6), whereas the DCM uniquely contained alpha-4-integrin. These observations demonstrate that the allantoic mesothelium is not a conventional epithelium but possesses regional ultrastructural, functional and molecular differences that may play important roles in the correct deployment of the umbilical cord and its associated vascular, hematopoietic, and other cell types.


Assuntos
Alantoide/anatomia & histologia , Alantoide/metabolismo , Alantoide/ultraestrutura , Animais , Caderinas/análise , Epitélio/anatomia & histologia , Epitélio/metabolismo , Epitélio/ultraestrutura , Proteínas de Membrana/análise , Camundongos , Fosfoproteínas/análise , Junções Íntimas/ultraestrutura , Saco Vitelino/anatomia & histologia , Proteína da Zônula de Oclusão-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA