Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(2): 958-981, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37801606

RESUMO

Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal ß-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.


Assuntos
Diatomáceas , Lipólise , Diatomáceas/metabolismo , Gotículas Lipídicas/metabolismo , Ecossistema , Ácido Eicosapentaenoico/metabolismo , Proteômica , Triglicerídeos/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1867(6): 130343, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933625

RESUMO

BACKGROUND: Physarum polycephalum is an unusual macroscopic myxomycete expressing a large range of glycosyl hydrolases. Among them, enzymes from the GH18 family can hydrolyze chitin, an important structural component of the cell walls in fungi and in the exoskeleton of insects and crustaceans. METHODS: Low stringency sequence signature search in transcriptomes was used to identify GH18 sequences related to chitinases. Identified sequences were expressed in E. coli and corresponding structures modelled. Synthetic substrates and in some cases colloidal chitin were used to characterize activities. RESULTS: Catalytically functional hits were sorted and their predicted structures compared. All share the TIM barrel structure of the GH18 chitinase catalytic domain, optionally fused to binding motifs, such as CBM50, CBM18, and CBM14, involved in sugar recognition. Assessment of the enzymatic activities following deletion of the C-terminal CBM14 domain of the most active clone evidenced a significant contribution of this extension to the chitinase activity. A classification based on module organization, functional and structural criteria of characterized enzymes was proposed. CONCLUSIONS: Physarum polycephalum sequences encompassing a chitinase like GH18 signature share a modular structure involving a structurally conserved catalytic TIM barrels decorated or not by a chitin insertion domain and optionally surrounded by additional sugar binding domains. One of them plays a clear role in enhancing activities toward natural chitin. GENERAL SIGNIFICANCE: Myxomycete enzymes are currently poorly characterized and constitute a potential source for new catalysts. Among them glycosyl hydrolases have a strong potential for valorization of industrial waste as well as in therapeutic field.


Assuntos
Quitinases , Mixomicetos , Physarum polycephalum , Quitinases/genética , Quitinases/química , Physarum polycephalum/metabolismo , Mixomicetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Quitina/química , Açúcares
3.
Methods Mol Biol ; 2553: 1-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227536

RESUMO

Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.


Assuntos
Biotecnologia , Engenharia Metabólica , Biotecnologia/métodos , Biologia Computacional , Fermentação , Indústrias , Engenharia Metabólica/métodos
4.
Front Bioeng Biotechnol ; 9: 734902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660556

RESUMO

Efficient and reliable genome engineering technologies have yet to be developed for diatoms. The delivery of DNA in diatoms results in the random integration of multiple copies, quite often leading to heterogeneous gene activity, as well as host instability. Transgenic diatoms are generally selected on the basis of transgene expression or high enzyme activity, without consideration of the copy number or the integration locus. Here, we propose an integrated pipeline for the diatom, Phaeodactylum tricornutum, that accurately quantifies transgene activity using a ß-glucuronidase assay and the number of transgene copies integrated into the genome through Droplet Digital PCR (ddPCR). An exhaustive and systematic analysis performed on 93 strains indicated that 42% of them exhibited high ß-glucuronidase activity. Though most were attributed to high transgene copy numbers, we succeeded in isolating single-copy clones, as well as sequencing the integration loci. In addition to demonstrating the impact of the genomic integration site on gene activity, this study identifies integration sites for stable transgene expression in Phaeodactylum tricornutum.

5.
Curr Biol ; 31(15): 3221-3232.e9, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102110

RESUMO

Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.


Assuntos
Diatomáceas , Alelos , Divisão Celular , Cromossomos , Variações do Número de Cópias de DNA , Diatomáceas/genética
6.
Methods Mol Biol ; 2307: 25-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847980

RESUMO

TALENs (Transcription Activator-Like EndoNuclease) are molecular scissors designed to recognize and introduce a double-strand break at a specific genome locus. They represent tools of interest in the frame of genome edition. Upon cleavage, two different pathways lead to DNA repair: Non-homologous End Joining (NHEJ) repair, leading to efficient introduction of short insertion/deletion mutations which can disrupt translational reading frame and Homology Recombination (HR)-directed repair that occurs when exogenous DNA is supplied. Here we introduce how to use TALENs in the oleaginous yeast Yarrowia lipolytica by presenting a step-by-step method allowing to knock out or to introduce in vivo a point mutation in a gene of Yarrowia lipolytica. This chapter describes the material required, the transformation procedure, and the screening process.


Assuntos
Edição de Genes/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Yarrowia/genética , Reparo do DNA por Junção de Extremidades , Genoma Fúngico , Mutação Puntual , Software
7.
ACS Synth Biol ; 9(9): 2562-2575, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786349

RESUMO

CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.


Assuntos
Edição de Genes/métodos , Acil-CoA Oxidase/genética , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Yarrowia/enzimologia
9.
J Mol Biol ; 430(21): 4293-4306, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30227135

RESUMO

Yarrowia lipolytica is an oleaginous yeast of growing industrial interest for biotechnological applications. In the last few years, genome edition has become an easier and more accessible prospect with the world wild spread development of CRISPR/Cas9 technology. In this study, we focused our attention on the production of the two key elements of the CRISPR-Cas9 ribonucleic acid protein complex in this non-conventional yeast. The efficiency of NHEJ-induced knockout was measured by time-course monitoring using multiple parameters flow cytometry, as well as phenotypic and genotypic observations, and linked to nuclease production levels showing that its strong overexpression is unnecessary. Thus, the limiting factor for the generation of a functional ribonucleic acid protein complex clearly resides in guide expression, which was probed by testing different linker lengths between the transfer RNA promoter and the sgRNA. The results highlight a clear deleterious effect of mismatching bases at the 5' end of the target sequence. For the first time in yeast, an investigation of its maturation from the primary transcript was undertaken by sequencing multiple sgRNAs extracted from the host. These data provide insights into of the yeast small RNA processing, from synthesis to maturation, and suggests a pathway for their degradation in Y. lipolytica. Subsequently, a whole-genome sequencing of a modified strain detected no abnormal modification due to off-target effects, confirming CRISPR/Cas9 as a safe strategy for editing Y. lipolytica genome. Finally, the optimized system was used to promote in vivo directed mutagenesis via homology-directed repair with a ssDNA oligonucleotide.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Yarrowia/genética , Genoma Fúngico , Regiões Promotoras Genéticas
10.
Plant Cell Rep ; 37(10): 1401-1408, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167805

RESUMO

Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.


Assuntos
Diatomáceas/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas , Genoma , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
11.
Nat Commun ; 9(1): 3924, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254261

RESUMO

Recently developed transgenic techniques to explore and exploit the metabolic potential of microalgae present several drawbacks associated with the delivery of exogenous DNA into the cells and its subsequent integration at random sites within the genome. Here, we report a highly efficient multiplex genome-editing method in the diatom Phaeodactylum tricornutum, relying on the biolistic delivery of CRISPR-Cas9 ribonucleoproteins coupled with the identification of two endogenous counter-selectable markers, PtUMPS and PtAPT. First, we demonstrate the functionality of RNP delivery by positively selecting the disruption of each of these genes. Then, we illustrate the potential of the approach for multiplexing by generating double-gene knock-out strains, with 65% to 100% efficiency, using RNPs targeting one of these markers and PtAureo1a, a photoreceptor-encoding gene. Finally, we created triple knock-out strains in one step by delivering six RNP complexes into Phaeodactylum cells. This approach could readily be applied to other hard-to-transfect organisms of biotechnological interest.


Assuntos
Diatomáceas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Transfecção/métodos , Adenina Fosforribosiltransferase/genética , Adenina Fosforribosiltransferase/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sistemas CRISPR-Cas , Diatomáceas/metabolismo , Microalgas/genética , Microalgas/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Reprodutibilidade dos Testes , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Homologia de Sequência de Aminoácidos
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717021

RESUMO

Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Diatomáceas/genética , Diatomáceas/metabolismo , Engenharia Genética , Biotecnologia , Engenharia Metabólica
13.
ACS Synth Biol ; 6(10): 1870-1879, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28585817

RESUMO

Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.


Assuntos
Ácido Graxo Sintases/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Yarrowia/enzimologia , Transporte Biológico/genética , Transporte Biológico/fisiologia , Ácido Graxo Sintases/genética , Ácidos Graxos/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Yarrowia/genética , Yarrowia/metabolismo
14.
Sci Rep ; 5: 8150, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25632877

RESUMO

A key feature when designing DNA targeting tools and especially nucleases is specificity. The ability to control and tune this important parameter represents an invaluable advance to the development of such molecular scissors. Here, we identified and characterized new non-conventional RVDs (ncRVDs) that possess novel intrinsic targeting specificity features. We further report a strategy to control TALEN targeting based on the exclusion capacities of ncRVDs (discrimination between different nucleotides). By implementing such ncRVDs, we demonstrated in living cells the possibility to efficiently promote TALEN-mediated processing of a target in the HBB locus and alleviate undesired off-site cleavage. We anticipate that this method can greatly benefit to designer nucleases, especially for therapeutic applications and synthetic biology.


Assuntos
Desoxirribonucleases/metabolismo , Repetições de Dinucleotídeos , Marcação de Genes , Sequência de Bases , Linhagem Celular , Hemoglobinas/química , Hemoglobinas/genética , Humanos , Hidrólise , Dados de Sequência Molecular , Especificidade por Substrato , Leveduras/genética , Leveduras/metabolismo
15.
Methods ; 69(2): 151-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25047178

RESUMO

TALEN is one of the most widely used tools in the field of genome editing. It enables gene integration and gene inactivation in a highly efficient and specific fashion. Although very attractive, the apparent simplicity and high success rate of TALEN could be misleading for novices in the field of gene editing. Depending on the application, specific TALEN designs, activity assessments and screening strategies need to be adopted. Here we report different methods to efficiently perform TALEN-mediated gene integration and inactivation in different mammalian cell systems including induced pluripotent stem cells and delineate experimental examples associated with these approaches.


Assuntos
Marcação de Genes/métodos , Genoma/genética , Ativação Transcricional/genética , Transfecção/métodos , Animais , Sequência de Bases , Linhagem Celular , Proteínas de Ligação a DNA/genética , Células HCT116 , Humanos , Dados de Sequência Molecular
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 2042-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004980

RESUMO

DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin ß (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.


Assuntos
DNA/química , Genoma , Sequências Hélice-Alça-Hélice , Calorimetria , Cristalografia por Raios X , Humanos
17.
BMC Mol Biol ; 15: 13, 2014 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-24997498

RESUMO

BACKGROUND: The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. RESULTS: In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. CONCLUSION: Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Proteínas Fúngicas/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Leveduras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Marcação de Genes/métodos , Loci Gênicos , Humanos , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Leveduras/genética
18.
Nat Commun ; 5: 3831, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24871200

RESUMO

Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.


Assuntos
Biotecnologia , Diatomáceas/genética , Engenharia Genética/métodos , Genoma , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Quebras de DNA de Cadeia Dupla , Endonucleases/metabolismo , Citometria de Fluxo , Genótipo , Lipídeos/biossíntese , Dados de Sequência Molecular , Mutagênese/genética , Taxa de Mutação , Espectrometria de Massas em Tandem , Transativadores/metabolismo , Triglicerídeos/análise
19.
Nucleic Acids Res ; 42(8): 5390-402, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24569350

RESUMO

A key issue when designing and using DNA-targeting nucleases is specificity. Ideally, an optimal DNA-targeting tool has only one recognition site within a genomic sequence. In practice, however, almost all designer nucleases available today can accommodate one to several mutations within their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator-like effector nucleases (TALEN). The analysis of >15 500 unique TALEN/DNA cleavage profiles allowed us to monitor the specificity gradient of the RVDs along a TALEN/DNA binding array and to present a specificity scoring matrix for RVD/nucleotide association. Furthermore, we report that TALEN can only accommodate a relatively small number of position-dependent mismatches while maintaining a detectable activity at endogenous loci in vivo, demonstrating the high specificity of these molecular tools. We thus envision that the results we provide will allow for more deliberate choices of DNA binding arrays and/or DNA targets, extending our engineering capabilities.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/química , Desoxirribonucleases/metabolismo , Aminoácidos/química , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Clivagem do DNA , Mutação , Análise Serial de Proteínas , Engenharia de Proteínas , Leveduras/genética
20.
Sci Rep ; 4: 3831, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24452192

RESUMO

The last few years have seen the increasing development of new DNA targeting molecular tools and strategies for precise genome editing. However, opportunities subsist to either improve or expand the current toolbox and further broaden the scope of possible biotechnological applications. Here we report the discovery and the characterization of BurrH, a new modular DNA binding protein from Burkholderia rhizoxinica that is composed of highly polymorphic DNA targeting modules. We also engineered this scaffold to create a new class of designer nucleases that can be used to efficiently induce in vivo targeted mutagenesis and targeted gene insertion at a desired locus.


Assuntos
Burkholderia/enzimologia , Proteínas de Ligação a DNA/metabolismo , Engenharia Genética/métodos , Genoma Humano , Mutagênese Insercional , Sequência de Aminoácidos , Sequência de Bases , Burkholderia/genética , Biologia Computacional , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA