Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36992004

RESUMO

In recent decades, structural health monitoring (SHM) has gained increased importance for ensuring the sustainability and serviceability of large and complex structures. To design an SHM system that delivers optimal monitoring outcomes, engineers must make decisions on numerous system specifications, including the sensor types, numbers, and placements, as well as data transfer, storage, and data analysis techniques. Optimization algorithms are employed to optimize the system settings, such as the sensor configuration, that significantly impact the quality and information density of the captured data and, hence, the system performance. Optimal sensor placement (OSP) is defined as the placement of sensors that results in the least amount of monitoring cost while meeting predefined performance requirements. An optimization algorithm generally finds the "best available" values of an objective function, given a specific input (or domain). Various optimization algorithms, from random search to heuristic algorithms, have been developed by researchers for different SHM purposes, including OSP. This paper comprehensively reviews the most recent optimization algorithms for SHM and OSP. The article focuses on the following: (I) the definition of SHM and all its components, including sensor systems and damage detection methods, (II) the problem formulation of OSP and all current methods, (III) the introduction of optimization algorithms and their types, and (IV) how various existing optimization methodologies can be applied to SHM systems and OSP methods. Our comprehensive comparative review revealed that applying optimization algorithms in SHM systems, including their use for OSP, to derive an optimal solution, has become increasingly common and has resulted in the development of sophisticated methods tailored to SHM. This article also demonstrates that these sophisticated methods, using artificial intelligence (AI), are highly accurate and fast at solving complex problems.

2.
Sensors (Basel) ; 23(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36850802

RESUMO

This paper reviews recent advances in sensor technologies for non-destructive testing (NDT) and structural health monitoring (SHM) of civil structures. The article is motivated by the rapid developments in sensor technologies and data analytics leading to ever-advancing systems for assessing and monitoring structures. Conventional and advanced sensor technologies are systematically reviewed and evaluated in the context of providing input parameters for NDT and SHM systems and for their suitability to determine the health state of structures. The presented sensing technologies and monitoring systems are selected based on their capabilities, reliability, maturity, affordability, popularity, ease of use, resilience, and innovation. A significant focus is placed on evaluating the selected technologies and associated data analytics, highlighting limitations, advantages, and disadvantages. The paper presents sensing techniques such as fiber optics, laser vibrometry, acoustic emission, ultrasonics, thermography, drones, microelectromechanical systems (MEMS), magnetostrictive sensors, and next-generation technologies.

3.
Sensors (Basel) ; 17(12)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258274

RESUMO

This paper presents a novel non-destructive testing and health monitoring system using a network of tactile transducers and accelerometers for the condition assessment and damage classification of foundation piles and utility poles. While in traditional pile integrity testing an impact hammer with broadband frequency excitation is typically used, the proposed testing system utilizes an innovative excitation system based on a network of tactile transducers to induce controlled narrow-band frequency stress waves. Thereby, the simultaneous excitation of multiple stress wave types and modes is avoided (or at least reduced), and targeted wave forms can be generated. The new testing system enables the testing and monitoring of foundation piles and utility poles where the top is inaccessible, making the new testing system suitable, for example, for the condition assessment of pile structures with obstructed heads and of poles with live wires. For system validation, the new system was experimentally tested on nine timber and concrete poles that were inflicted with several types of damage. The tactile transducers were excited with continuous sine wave signals of 1 kHz frequency. Support vector machines were employed together with advanced signal processing algorithms to distinguish recorded stress wave signals from pole structures with different types of damage. The results show that using fast Fourier transform signals, combined with principal component analysis as the input feature vector for support vector machine (SVM) classifiers with different kernel functions, can achieve damage classification with accuracies of 92.5% ± 7.5%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA