Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 241: 117702, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980985

RESUMO

Trace heavy metals such as copper and nickel, when exceeds a certain level, cause detrimental effects on the ecosystem. The current study examined the potential of organic compounds enriched rice husk biochar (OCEB's) to remove the trace heavy metals from an aqueous solution in four steps. In 1st step, biochar' physical and chemical properties were analyzed through scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). In the 2nd step, two biochar vis-a-vis glycine, alanine enriched biochar (GBC, ABC) was selected based on their adsorption capacity of four different metals Cr, Cu, Ni and Pb (chromium, copper, nickel, and lead). These two adsorbents (GBC, ABC) were further used to evaluate the best interaction of biochar for metal immobilization based on varying concentrations and times. Langmuir isotherm model suggested that the adsorption of Ni and Cu on the adsorbent surface supported the monolayer sorption. The qmax value of GBC for Cu removal increased by 90% compared to SBC (Simple rice husk biochar). The interaction of Cu and Ni with GBC and ABC was chemical, and 10 different time intervals were studied using pseud first and second-order kinetics models. The current study has supported the pseudo second-order kinetic model, which exhibited that the sorption of Ni and Cu occurred due to the chemical processes. The % removal efficiency with GBC was enhanced by 21% and 30% for Cu and Ni, respectively compared to the SBC. It was also noticed that GBC was 21% more efficient for % removal efficiency than the CBC. The study's findings supported that organic compound enriched rice husk biochar (GBC and ABC) is better than SBC for immobilizing the trace heavy metals from an aqueous solution.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Cobre/química , Níquel , Adsorção , Ecossistema , Metais Pesados/química , Compostos Orgânicos , Água , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 30(37): 86632-86655, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438501

RESUMO

The pollution of microplastics (MPs) is a worldwide major concern, as they have become a major part of our food chain. MPs enter our ecosystem via different pathways, including anthropogenic activities and improper disposal of plastics. The aim of this article is to review the current scientific literature related to MPs and how they affect different life forms on earth. Briefly, MPs induced negative effects on humans are primarily linked with the oxidative stress and disruption in immunity. MPs not only affect the soil chemical and physical properties such as reduction in soil health and productivity but also impose harmful effects on soil microorganisms. Moreover, MP-induced plant growth reduction results from three complementary mechanisms: (i) reduction in root and shoot growth, (ii) reduction in photosynthesis accompanied by higher reactive oxygen species (ROS) production, and (iii) reduction in nutrient uptake via altered root growth. Given the negative effects of MPs on different life forms, it is important to remove or remediate them. We have discussed different MP removal methods including coagulation, membrane filtration technology, biochar, and biological degradation of MPs in soil and wastewater effluents. The use of ozone as ultrafiltration technique has also been shown as the most promising technique for MP removal. Finally, some future research recommendations are also put forward at the end to further enhance our understanding of the MPs induced negative effects on different life forms. The flowchart shows the interaction of MPs from water contaminated with MPs with different parts of the ecosystem and final interaction with human health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Ecossistema , Efeitos Antropogênicos , Transporte Biológico , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA