Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 4(5): 527-539, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27957503

RESUMO

BACKGROUND: Usher syndrome (USH) is a genetically heterogeneous deafness-blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. METHODS: Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. RESULTS: Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C,USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. CONCLUSION: Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A. The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.

2.
Eur J Hum Genet ; 24(12): 1730-1738, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27460420

RESUMO

Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.


Assuntos
Testes Genéticos/métodos , Mutação , Síndromes de Usher/genética , Alelos , Hibridização Genômica Comparativa/métodos , Europa (Continente) , Exoma , Proteínas da Matriz Extracelular/genética , Genes Modificadores , Humanos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos , Síndromes de Usher/diagnóstico
4.
Eur J Hum Genet ; 23(12): 1646-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25804404

RESUMO

Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment, progressive visual loss owing to retinitis pigmentosa and in some cases vestibular dysfunction. Usher syndrome is divided into three subtypes, USH1, USH2 and USH3. Twelve loci and eleven genes have so far been identified. Duplications and deletions in PCDH15 and USH2A that lead to USH1 and USH2, respectively, have previously been identified in patients from United Kingdom, Spain and Italy. In this study, we investigate the proportion of exon deletions and duplications in PCDH15 and USH2A in 20 USH1 and 30 USH2 patients from Denmark using multiplex ligation-dependent probe amplification (MLPA). Two heterozygous deletions were identified in USH2A, but no deletions or duplications were identified in PCDH15. Next-generation mate-pair sequencing was used to identify the exact breakpoints of the two deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.


Assuntos
Proteínas da Matriz Extracelular/genética , Deleção de Genes , Síndromes de Usher/genética , Proteínas Relacionadas a Caderinas , Caderinas/genética , Pontos de Quebra do Cromossomo , Dinamarca , Éxons , Duplicação Gênica , Humanos
5.
Am J Hum Genet ; 90(1): 61-8, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243965

RESUMO

Low copper and ceruloplasmin in serum are the diagnostic hallmarks for Menkes disease, Wilson disease, and aceruloplasminemia. We report on five patients from four unrelated families with these biochemical findings who presented with a lethal autosomal-recessive syndrome of congenital cataracts, hearing loss, and severe developmental delay. Cerebral MRI showed pronounced cerebellar hypoplasia and hypomyelination. Homozygosity mapping was performed and displayed a region of commonality among three families at chromosome 3q25. Deep sequencing and conventional sequencing disclosed homozygous or compound heterozygous mutations for all affected subjects in SLC33A1 encoding a highly conserved acetylCoA transporter (AT-1) required for acetylation of multiple gangliosides and glycoproteins. The mutations were found to cause reduced or absent AT-1 expression and abnormal intracellular localization of the protein. We also showed that AT-1 knockdown in HepG2 cells leads to reduced ceruloplasmin secretion, indicating that the low copper in serum is due to reduced ceruloplasmin levels and is not a sign of copper deficiency. The severity of the phenotype implies an essential role of AT-1 in proper posttranslational modification of numerous proteins, without which normal lens and brain development is interrupted. Furthermore, AT-1 defects are a new and important differential diagnosis in patients with low copper and ceruloplasmin in serum.


Assuntos
Catarata/genética , Ceruloplasmina/metabolismo , Cobre/sangue , Perda Auditiva/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Sequência de Bases , Catarata/congênito , Cerebelo/anormalidades , Cerebelo/crescimento & desenvolvimento , Ceruloplasmina/análise , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 3/genética , Feminino , Perda Auditiva/congênito , Células Hep G2 , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/biossíntese , Dados de Sequência Molecular , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA