Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346034

RESUMO

Potato wart disease is caused by the obligate fungal pathogen Synchytrium endobioticum. DNA extraction from compost, purified spores and crude wart tissue derived from tuber galls of infected potatoes often results in low S. endobioticum DNA concentration or highly contaminated with DNA coming from other microorganisms and the potato host. Therefore, Illumina sequencing of these samples generally results in suboptimal recovery of the nuclear genome sequences of S. endobioticum. A hybridization-based target enrichment protocol was developed to strongly enhance the recovery of S. endobioticum DNA while off-target organisms DNA remains uncaptured. The design strategy involved creating a set of 180,000 molecular baits targeting both gene and non-gene regions of S. endobioticum. The baits were applied to whole genome amplified DNA samples of various S. endobioticum pathotypes (races) in compost, from purified spores and crude wart tissue samples. This was followed by Illumina sequencing and bioinformatic analyses. Compared to non-enriched samples, target enriched samples: 1) showed a significant increase in the proportion of sequenced bases mapped to the S. endobioticum nuclear genome, especially for crude wart tissue samples; 2) yielded sequencing data with higher and better nuclear genome coverage; 3) biased genome assembly towards S. endobioticum sequences, yielding smaller assembly sizes but higher representation of putative S. endobioticum contigs; 4) showed an increase in the number of S. endobioticum genes detected in the genome assemblies. Our hybridization-based target enrichment protocol offers a valuable tool for enhancing genome sequencing and NGS-based molecular detection of S. endobioticum, especially in difficult samples.


Assuntos
Quitridiomicetos , Verrugas , Quitridiomicetos/genética , Sequência de Bases , DNA
2.
Microbiol Resour Announc ; 12(10): e0023423, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37732799

RESUMO

The whole genomes of three Claviceps purpurea strains were sequenced using Oxford Nanopore Technologies' MinION and assembled into complete, chromosome-level assemblies. The C. purpurea genome consists of eight conserved chromosomes, with evidence of inter-chromosomal structural rearrangements between strains.

3.
Mycologia ; 114(3): 501-515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522547

RESUMO

The genus Pythium (nom. cons.) sensu lato (s.l.) is composed of many important species of plant pathogens. Early molecular phylogenetic studies suggested paraphyly of Pythium, which led to a formal proposal by Uzuhashi and colleagues in 2010 to split the genus into Pythium sensu stricto (s.s.), Elongisporangium, Globisporangium, Ovatisporangium (= Phytopythium), and Pilasporangium using morphological characters and phylogenies of the mt cytochrome c oxidase subunit 2 (cox2) and D1-D2 domains of nuc 28S rDNA. Although the split was fairly justified by the delineating morphological characters, there were weaknesses in the molecular analyses, which created reluctance in the scientific community to adopt these new genera for the description of new species. In this study, this issue was addressed using phylogenomics. Whole genomes of 109 strains of Pythium and close relatives were sequenced, assembled, and annotated. These data were combined with 10 genomes sequenced in previous studies. Phylogenomic analyses were performed with 148 single-copy genes represented in at least 90% of the taxa in the data set. The results showed support for the division of Pythium s.l. The status of alternative generic names that have been used for species of Pythium in the past (e.g., Artotrogus, Cystosiphon, Eupythium, Nematosporangium, Rheosporangium, Sphaerosporangium) was investigated. Based on our molecular analyses and review of the Pythium generic concepts, we urge the scientific community to adopt the generic names Pythium, Elongisporangium, Globisporangium, and their concepts as proposed by Uzuhashi and colleagues in 2010 in their work going forward. In order to consolidate the taxonomy of these genera, some of the recently described Pythium spp. are transferred to Elongisporangium and Globisporangium.


Assuntos
Pythium , Sequência de Bases , DNA Ribossômico , Filogenia , Sequenciamento Completo do Genoma
4.
Toxins (Basel) ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34822583

RESUMO

Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.


Assuntos
Claviceps/genética , Alcaloides de Claviceps/biossíntese , Genes Fúngicos/genética , Alcaloides Indólicos/isolamento & purificação , Claviceps/metabolismo , Evolução Molecular , Família Multigênica , Filogenia
5.
BMC Evol Biol ; 18(1): 136, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200892

RESUMO

BACKGROUND: Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen. RESULTS: We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence. CONCLUSIONS: Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


Assuntos
Evolução Biológica , Quitridiomicetos/genética , Genoma Mitocondrial , Plantas/microbiologia , Animais , Teorema de Bayes , Quitridiomicetos/patogenicidade , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Haplótipos/genética , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Quarentena , Reprodutibilidade dos Testes , Especificidade da Espécie , Virulência/genética
6.
IMA Fungus ; 9: 401-418, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30622889

RESUMO

This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA