RESUMO
Staphylococcus species are considered as one of the major pathogens causing outbreaks of food poisoning. The aim of this work was to assess the toxinogenic and antibiotic susceptibility profiles of the strains of Staphylococcus spp isolated from three types of fermented dairy products (yoghourt, millet dêguê, and couscous dêguê). The isolation of the Staphylococcus strains was performed on selective media, and their identification was done using biochemical and molecular methods. The susceptibility at 15 antibiotics tested was assessed using the disc diffusion method. The immunodiffusion method was used to evaluate the toxin (luk-E/D, luk-S/F, ETA, and ETB) production. Biofilm formation was qualitatively researched on microplates. Less than half (42.77%) of the collected samples were contaminated with Staphylococcus spp. The yoghourt and millet dêguê samples collected in the afternoon were more contaminated than those collected in the morning. The S. aureus, S. capitis, and S. xylosus strains, respectively, were the most present. S. aureus was the only coagulase-positive species identified in our samples. The highest resistance to antibiotics was observed with penicillin (100%) irrespective of the nature of the sample. S. aureus strains were highly (71.4%) resistant to methicillin. The S. aureus strains were the most biofilm-forming (27.6%), followed by S. capitis strains. Panton and Valentine's leukocidin (luk-S/F) was produced by only S. aureus strains at a rate of 8.33%. Only coagulase-negative Staphylococcus (CNS) produced Luk-E/D. The high rates of Staphylococci contamination indicate bad hygiene quality during the production and distribution of dairy products. It is, therefore, necessary to improve the quality of fermented milk products.
RESUMO
Escherichia coli O157 is a pathogenic bacterium causing haemorrhagic colitis. It represents a serious public health problem in Northern America and Europe, which can plague Africa. Most cases of mentioned poisoning were related to contaminated meat products and vegetables. The present work aimed to estimate the prevalence of E. coli O157 in meat and vegetables in Benin. For this purpose, 6 lots of faeces samples from pigs and 8 from cattle were collected at the farms on the outskirts of Cotonou. Similarly, 20 samples of carcasses, 20 samples of intestines and stomach, and 20 surfaces samples of slaughtering equipment were taken. Vegetables and environment materials in gardens have also been sampled for 84 samples. Bacteriological analyses revealed a percentage of contamination of 50% for pig faeces and 25% for cattle ones. All the meats from stalling parks have been contaminated by this bacterium. For vegetables, 14.6% of samples were contaminated by E. coli O157. The presence of this pathovar in animal breeding and slaughtering environment and in the gardens shows that Benin is not aware of the risks of foodborne illness associated with the consumption of contaminated products. Therefore, it urges including that germ in a systematic search during safety control of food products in Benin.
RESUMO
The aim of our study was to investigate the microbial quality of meat products and on some clinical samples in Abidjan focused on Staphylococcus genus and the toxin production profile of Staphylococcus aureus (S. aureus) isolated. Bacteria were collected from 240 samples of three meat products sold in Abidjan and 180 samples issued from clinical infections. The strains were identified by both microbiological and MALDI-TOF-MS methods. The susceptibility to antibiotics was determined by the disc diffusion method. The production of Panton-Valentine Leukocidin, LukE/D, and epidermolysins was screened using radial gel immunodiffusion. The production of staphylococcal enterotoxins and TSST-1 was screened by a Bio-Plex Assay. We observed that 96/240 of meat samples and 32/180 of clinical samples were contaminated by Staphylococcus. Eleven species were isolated from meats and 4 from clinical samples. Forty-two S. aureus strains were isolated from ours samples. Variability of resistance was observed for most of the tested antibiotics but none of the strains displays a resistance to imipenem and quinolones. We observed that 89% of clinical S. aureus were resistant to methicillin against 58% for those issued from meat products. All S. aureus isolates issued from meat products produce epidermolysins whereas none of the clinical strains produced these toxins. The enterotoxins were variably produced by both clinical and meat product samples.