Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0290684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091331

RESUMO

Wheat plays a crucial role in global food security, serving as a vital food crop that feeds billions of people worldwide. Currently, Russia and Ukraine are responsible for exporting approximately 25% of the world's wheat, making any issues in these regions a cause for concern regarding global wheat supply. The problems faced in these areas have led to a surge in wheat prices worldwide. Consequently, it becomes necessary to explore alternative regions that can compensate for the decline in wheat production and supply. This study focuses on wheat production and yield in major producing countries, utilizing the GYGA (Global Yield Gap Atlas) protocol for predictions. The findings reveal a global wheat production gap of 270,378,793 tons. Notably, the largest gap in irrigated wheat production exists in countries like China, India, Pakistan, Turkey, Iran, Afghanistan, Uzbekistan, Egypt, and Azerbaijan. Additionally, the rainfed wheat production gap on a global scale amounts to 545,215,692 tons, with Russia, the USA, Kazakhstan, Australia, Ukraine, China, Turkey, Canada, India, and France having the most significant production gaps. Through boundary line analysis, specific criteria were identified for suitable areas of irrigated and rainfed wheat cultivation. For irrigated conditions, the temperature range of 3000 to 7000 GDD (Growing Degree Days) and a temperature seasonality of 3 were determined as favorable. Under rainfed conditions, the suitable areas encompass a temperature range of 2000 to 4000 GDD, an aridity index exceeding 600, and a temperature seasonality of 2. Thirteen countries possess extensive agricultural land within the climatic codes favorable for irrigated wheat cultivation. Approximately 50% of the agricultural lands within these countries, corresponding to the total arable area for irrigated wheat, fall within the climatic codes 3403, 5403, 5303, 4303, 5503, 5203, 3503, 3303, and 4103. China, the United States, Ukraine, Russia, and Iran are the top five countries with favorable lands for irrigated wheat cultivation. Similarly, fourteen countries have significant agricultural lands within the favorable climatic codes for rainfed wheat cultivation. Around 52% of the agricultural lands within these countries are within the climatic codes 3702, 2702, 2802, and 4602. France, Germany, Britain, Poland, and Denmark possess the highest potential to expand rainfed wheat cultivation areas within these favorable climate codes, with respective areas of 2.7, 2.6, 1.6, and 0.9 million hectares. According to the study, the North China Plain emerges as a primary region for increasing irrigated wheat production, both in terms of cultivated area and yield potential. For rainfed conditions, the European continent stands out as a significant region to enhance wheat production.


Assuntos
Agricultura , Triticum , Humanos , Temperatura , Egito , Insegurança Alimentar
2.
Sci Rep ; 13(1): 15898, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741907

RESUMO

Global food security requires food production to be increased in the future decades. Agro-Ecological Zones (AEZ) methodology is a successful approach used in land evaluation studies to support sustainable agricultural development. This approach can facilitate finding suitable areas for wheat production on a global scale. This study was conducted based on a climate zone map, soil data, wheat cultivation area, yield, and production under irrigated and rainfed conditions, worldwide. The results for irrigated wheat indicated that there is an area of 59.5 Mha with an average yield of 4.02 t/ha which leads to the production of about 239.6 Mt of grain yield. Furthermore, climate zones (CZs) of 8002, 5203, 5302, 5403, and 8102 have the highest wheat production with an average of 20.7, 14.2, 13.3, 11.8, 11.5 Mt, respectively. The highest amount of irrigated wheat production has been achieved in soil type code 17 (Loam LF120), which has a cultivation area of around 23.6 Mha and a production of about 106.8 Mt. Rainfed wheat production is 410 Mt, and the cultivation area is 160.2 Mha. The highest rainfed wheat production with an average of 17 Mt was related to the 3702 CZ, followed by the other CZs (3802, 1303, 1203, 3602, 4602, etc.). The soil codes 11 (Loam HF120), 10 (Loam HF180), and 14 (Loam MF120) showed the highest rainfed wheat production. The findings of this study can be useful for agricultural scientists, authorities, and decision-makers around the world to find suitable lands to expand wheat cultivation and also to find new locations for increasing global wheat production to feed the increasing population in the world.


Assuntos
Agricultura , Triticum , Planejamento de Cidades , Grão Comestível , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA