Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cureus ; 16(4): e57420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699130

RESUMO

Background The burden of mitral regurgitation is high, and studies show it is the most common valvular pathology. The management of mitral regurgitation varies and depends on the chronicity, severity, etiology, and comorbidities of the patient. Surgical repair is recommended over replacement. Transcatheter edge-to-edge repair (TEER) has been shown to improve the prognosis of patients with mitral regurgitation and appears relatively safer than surgical repair in patients with high surgical risks. In this study, we examined the outcomes of TEER in patients with chronic kidney disease (CKD) by retrospectively evaluating data from the 2010 to 2016 Nationwide Inpatient Sample (NIS). Methodology We retrospectively evaluated data from the 2010 to 2016 NIS. TEER was identified using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) and International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10- CM) codes of 35.97 and 02UG3JZ, respectively, from our dataset. The study sample was stratified based on renal function into two groups (CKD and no CKD). Patients with CKD were identified using ICD-9-CM codes 585.3, 585.4, 585.5, and 585.6 and ICD-10-CM codes N18.3, N18.4, N18.5, and N18.6. Results There was no significant difference in major complications and overall complications between patients with and without CKD. However, heart failure, non-ST-elevation myocardial infarction, cardiac tamponade, and cardiogenic shock were more prevalent in the CKD group. Patients with CKD were also more likely to sustain respiratory failure, post-procedure hemothorax, and require blood product transfusions. For renal complications, analysis showed that superimposed acute kidney injury and the need for hemodialysis were more common in the CKD group. Of note, there was no difference in neurologic complications, gastrointestinal bleeding, and thromboembolic complications between both groups. Patients with CKD who underwent TEER were more likely to have prolonged hospital stays without a significant increase in hospitalization charges. These patients were also more likely to be discharged to rehabilitation facilities. Conclusions CKD confers significant morbidity and mortality to patients undergoing TEER. Providers should be aware of these discrepancies in outcomes for patients with CKD in need of TEER to help better optimize their care.

2.
Arch Virol ; 169(3): 62, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446223

RESUMO

Sampled ticks were screened for Crimean-Congo haemorrhagic fever virus (CCHFV) using an assay that targets the nucleoprotein gene region of the S segment, a conserved region of the CCHFV genome. Minimum infection rates of 0.34% and 0.10% were obtained when testing pools of Hyalomma rufipes and Amblyomma variegatum, respectively. Next-generation sequencing and phylogenetic analysis showed that the S and L segments of the CCHFV isolate clustered with those of similar isolates of genotype III. However, analysis of the M segment showed that reassortment had occurred, causing this segment to cluster with those of isolates of genotype I, providing the first evidence of such an occurrence in Ghana.


Assuntos
Amblyomma , Vírus da Febre Hemorrágica da Crimeia-Congo , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Gana , Filogenia , Bioensaio
3.
Exp Appl Acarol ; 92(2): 253-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351235

RESUMO

Ticks are competent vectors of a wide range of pathogens. They are of veterinary and public health importance as they affect both animal and human health. Transhumance and the transboundary movements of cattle within the West African Sub-region have facilitated the spread of ticks which threatens the introduction of invasive species. Currently, Rhipicephalus microplus have been identified in the Upper East Region of Ghana which could mean a wider distribution of the species across the country due to livestock trade. This study focused on three sites in the Greater Accra Region, which serves as the gateway to receiving most of the cattle transported from the northern regions of Ghana. Ticks were sampled from August 2022 in the wet season to January 2023 in the dry season. Three tick genera were identified: Amblyomma (19.5%), Hyalomma (1.1%), and Rhipicephalus (79.3%) from the 1,489 feeding ticks collected from cattle. Furthermore, Rhipicephalus microplus, Hyalomma rufipes and Amblyomma variegatum were identified molecularly using primers that target the mitochondrial COI gene. There was a significant association between the tick species and seasons (p < 0.001). Finding R. microplus in this study indicates the extent of the spread of this invasive tick species in Ghana and highlights the need for efficient surveillance systems and control measures within the country.


Assuntos
Doenças dos Bovinos , Ixodidae , Rhipicephalus , Infestações por Carrapato , Humanos , Bovinos , Animais , Rhipicephalus/genética , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Gana , Doenças dos Bovinos/epidemiologia , Ixodidae/genética , Espécies Introduzidas
4.
Am J Trop Med Hyg ; 110(3): 491-496, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38295420

RESUMO

The threats from vector-borne pathogens transmitted by ticks place people (including deployed troops) at increased risk for infection, frequently contributing to undifferentiated febrile illness syndromes. Wild and domesticated animals are critical to the transmission cycle of many tick-borne diseases. Livestock can be infected by ticks, and serve as hosts to tick-borne diseases such as rickettsiosis. Thus, it is necessary to identify the tick species and determine their potential to transmit pathogens. A total of 1,493 adult ticks from three genera-Amblyomma, Hyalomma, and Rhipicephalus-were identified using available morphological keys and were pooled (n = 541) by sex and species. Rickettsia species were detected in 308 of 541 (56.9%) pools by genus-specific quantitative polymerase chain reaction assay (Rick17b). Furthermore, sequencing of the outer membrane protein A and B genes (ompA and ompB) of random samples of Rickettsia-positive samples led to the identification of Rickettsia aeschlimannii and Rickettsia africae with most R. africae DNA (80.2%) detected in pools of Amblyomma variegatum. We report the first molecular detection and identification of the rickettsial pathogens R. africae and R. aeschlimannii in ticks from Ghana. Our findings suggest there is a need to use control measures to prevent infections from occurring among human populations in endemic areas in Ghana. This study underscores the importance of determining which vector-borne pathogens are in circulation in Ghana. Further clinical and prevalence studies are needed to understand more comprehensively the clinical impact of these rickettsial pathogens contributing to human disease and morbidity in Ghana.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Adulto , Humanos , Carrapatos/microbiologia , Gana/epidemiologia , Rickettsia/genética , Doenças Transmitidas por Carrapatos/microbiologia
5.
Parasit Vectors ; 17(1): 16, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195546

RESUMO

BACKGROUND: A significant decrease in malaria morbidity and mortality has been attained using long-lasting insecticide-treated nets and indoor residual spraying. Selective pressure from these control methods influences changes in vector bionomics and behavioural pattern. There is a need to understand how insecticide resistance drives behavioural changes within vector species. This study aimed to determine the spatio-temporal dynamics and biting behaviour of malaria vectors in different ecological zones in Ghana in an era of high insecticide use for public health vector control. METHODS: Adult mosquitoes were collected during the dry and rainy seasons in 2017 and 2018 from five study sites in Ghana in different ecological zones. Indoor- and outdoor-biting mosquitoes were collected per hour from 18:00 to 06:00 h employing the human landing catch (HLC) technique. Morphological and molecular species identifications of vectors were done using identification keys and PCR respectively. Genotyping of insecticide-resistant markers was done using the TaqMan SNP genotyping probe-based assays. Detection of Plasmodium falciparum sporozoites was determined using PCR. RESULTS: A total of 50,322 mosquitoes belonging to four different genera were collected from all the study sites during the sampling seasons in 2017 and 2018. Among the Anophelines were Anopheles gambiae s.l. 93.2%, (31,055/33,334), An. funestus 2.1%, (690/33,334), An. pharoensis 4.6%, (1545/33,334), and An. rufipes 0.1% (44/33,334). Overall, 76.4%, (25,468/33,334) of Anopheles mosquitoes were collected in the rainy season and 23.6%, (7866/33,334) in the dry season. There was a significant difference (Z = 2.410; P = 0.0160) between indoor-biting (51.1%; 15,866/31,055) and outdoor-biting An. gambiae s.l. (48.9%; 15,189/31,055). The frequency of the Vgsc-1014F mutation was slightly higher in indoor-biting mosquitoes (54.9%) than outdoors (45.1%). Overall, 44 pools of samples were positive for P. falciparum CSP giving an overall sporozoite rate of 0.1%. CONCLUSION: Anopheles gambiae s.l. were more abundant indoors across all ecological zones of Ghana. The frequency of G119S was higher indoors than outdoors from all the study sites, but with higher sporozoite rates in outdoor mosquitoes in Dodowa and Kpalsogu. There is, therefore, an urgent need for a supplementary malaria control intervention to control outdoor-biting mosquitoes.


Assuntos
Anopheles , Inseticidas , Malária Falciparum , Malária , Adulto , Humanos , Animais , Anopheles/genética , Malária/prevenção & controle , Gana , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle
6.
Vet Med Int ; 2024: 8889907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234318

RESUMO

The ability of ticks to adapt to different ecological zones, coupled with the spread of infectious pathogens negatively affects livestock production and thus, there is a need for better control strategies. However, control measures within a geographical region can only be effective if there is available information on tick population dynamics and ecology. This study focused on ticks infesting livestock in the Kassena-Nankana Districts of the Upper East Region of Ghana. The ticks were morphologically identified, variables such as season, animal host, and predilection sites were recorded, and the data were analyzed using STATA version 13. Out of 448 livestock examined, tick infestation in cattle was (78.60%), followed by sheep (25%) and goats (5.88%). A total of 1,550 ticks including nymphs (303) and adults (1,247) were collected. Adult ticks were found to be significantly associated with season (p < 0.001), with a high burden in the wet season. The nymph burden and body parts of livestock hosts were significantly associated with more nymphs collected from male animals than females (p < 0.001). Three genera of ticks, Amblyomma (62.97%), Hyalomma (18.71%), and Rhipicephalus (18.32%) were morphologically identified with the most predominant tick species recorded as Amblyomma variegatum (62.97%). Matured A. variegatum was sampled primarily in the wet season with their predilection site as the udder/scrotum (p < 0.001). However, adult Hyalomma truncatum was observed to have a significant association with the anal region (p < 0.001). Findings from this study are essential for formulating tick control measures to prevent the spread of infectious pathogens.

7.
Parasitol Res ; 123(1): 44, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095712

RESUMO

Ticks are important vectors involved in the transmission of pathogens of zoonotic and veterinary importance. In this study, ticks were collected from cattle in Navrongo, Kintampo, and Kumasi and screened for pathogen DNA using PCR and Sanger sequencing. A total of 454 ticks were collected, morphologically identified and confirmed using primers that target the 660-bp segment of the mitochondrial COI gene. The predominant tick species was Amblyomma variegatum (70.26%). DNA was extracted from 85 tick pools and screened for the presence of Rickettsia DNA based on the 639 bp of the outer membrane protein A (ompA) gene, Ehrlichia/Anaplasma DNA based on the 345 bp fragment of the 16SrRNA gene and Babesia/ Theileria DNA based on the 560 bp fragment of the ssrRNA gene. From the 85 tick pools, the DNA of pathogens detected were Rickettsia africae (36.47%), Rickettsia aeschlimannii (16.47%), Ehrlichia canis (2.35%), Babesia occultans (1.18%), Theileria velifera (1.18%) and a symbiont Candidatus Midichloria mitochondrii (8.24%). This study reports the first molecular detection of Candidatus Cryptoplasma californiense (1.18%) in Ghana. Coinfections were recorded in 8.24% of the tick pools. The findings of this study highlight the importance of tick species in Ghana and the need to adopt effective control measures to prevent pathogen spread.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Rickettsia , Theileria , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Gana/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Rickettsia/genética , Rhipicephalus/genética , Theileria/genética , DNA
8.
Med Vet Entomol ; 37(4): 878-882, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37589253

RESUMO

Ticks are efficient vectors for transmitting pathogens that negatively affect livestock production and pose a risk to public health. In this study, Babesia and Theileria species were identified in ticks collected from cattle, sheep and goats from the Kassena-Nankana Districts of Ghana between February and December 2020. A total of 1550 ticks were collected, morphologically identified, pooled and screened for pathogens using primers that amplify a 560 bp fragment of the ssrRNA gene and Sanger sequencing. Amblyomma variegatum (62.98%) was the predominant tick species. From the 491 tick pools screened, 12/15 (2.44%) positive pools were successfully sequenced. The pathogen DNA identified were Theileria ovis in eight (15.38%) pools of Rhipicephalus evertsi evertsi, Theileria velifera in two (0.78%) pools of A. variegatum and Babesia occultans and Babesia sp. Xinjiang in one (1.72%) pool each of Hyalomma truncatum. It was further observed that T. ovis occurred in ticks collected from only sheep (p < 0.001) which were females (p = 0.023) and < =1 year old (p = 0.040). This study reports the first identification of these pathogens in ticks within Kassena-Nankana. With the constant trade of livestock, there is a need for effective tick control measures to prevent infection spread.


Assuntos
Babesia , Doenças dos Bovinos , Parasitos , Rhipicephalus , Theileria , Feminino , Animais , Bovinos , Ovinos , Masculino , Gana , Doenças dos Bovinos/parasitologia
9.
Exp Appl Acarol ; 90(1-2): 137-153, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37322233

RESUMO

Ticks are arthropods of veterinary and medical importance which spread zoonotic pathogens that link animal and human health. In this study, ticks were collected from 448 livestock between February and December 2020 in the Kassena-Nankana Districts of Ghana and screened for the presence of zoonotic pathogens DNA using PCR and sequencing approaches. In total, 1550 ticks were collected and morphologically identified. Three tick genera were identified with Amblyomma variegatum (63%) as the predominant tick species collected. DNA was extracted from 491 tick pools and screened for the presence of DNA of Rickettsia spp. based on the 115 bp fragment of the 17 kDa surface protein and 639 bp of the Outer membrane protein A (ompA) gene and the 295 bp fragment of the transposase gene of Coxiella burnetii IS1111a element. From the 491 pools screened, the DNA of Rickettsia spp. and C. burnetii was detected in 56.8 and 3.7%, respectively. Coinfections were identified in 2.4% of the tick pools. Characterization of the Rickettsia spp. in this study based on the ompA gene showed that the DNA of Rickettsia africae and Rickettsia aeschlimannii accounted for 39.7 and 14.7%, respectively, and were 100% similar to sequences in GenBank. Most R. africae and C. burnetii infections occurred in ticks collected in the wet season, whereas R. aeschlimannii occurred mostly in the dry season. These pathogens are potential public health threats, thus there is a need to implement control measures to reduce the risk of infections in vulnerable populations.


Assuntos
Coxiella burnetii , Ixodidae , Rickettsia , Carrapatos , Animais , Humanos , Coxiella burnetii/genética , Gana/epidemiologia , Rickettsia/genética , Ixodidae/microbiologia
10.
Parasit Vectors ; 16(1): 205, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337221

RESUMO

BACKGROUND: Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector-human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. METHODS: Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. RESULTS: Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = -0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = -4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). CONCLUSION: Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Gana/epidemiologia , Mosquitos Vetores , Controle de Mosquitos/métodos , Malária/epidemiologia , Malária/prevenção & controle , Inseticidas/farmacologia
11.
Exp Appl Acarol ; 89(3-4): 475-483, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37052725

RESUMO

Ticks are a public health threat due to their tendency to spread pathogens that affect humans and animals. With reports of Rhipicephalus (Boophilus) microplus invasion in neighbouring countries, there is the risk of this species invading Ghana through livestock trade. Previous identification of tick species in Ghana has been based on morphological identification, which can be ineffective, especially with damaged tick specimens or engorged nymphs. This study focused on the Kassena-Nankana District, which serves as a trade route for cattle into Ghana, to determine the presence of R. microplus. Three genera of ticks were identified as Amblyomma (70.9%), Hyalomma (21.3%) and Rhipicephalus (7.8%). The engorged nymphs that could not be identified morphologically were analyzed using primers that target the mitochondrial 16S rRNA gene. This study reports the first record of R. (B.) microplus in Ghana. Furthermore, R. microplus constituted 54.8% of the Boophilus species collected in this study. This finding is an addition to the diverse tick species previously collected in Ghana, most of which are of veterinary and public health importance. With reports of acaricide resistance in R. microplus and its role in spreading infectious pathogens, the detection of this species in Ghana cannot be overlooked. Nationwide surveillance will be essential to ascertain its distribution, its effects on cattle production, and the control measures adopted.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Bovinos , Doenças dos Bovinos/parasitologia , Gana , Filogenia , Rhipicephalus/classificação , Rhipicephalus/fisiologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/prevenção & controle , Animais
12.
Arch Microbiol ; 205(3): 92, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795247

RESUMO

Tick-borne pathogens harm livestock production and pose a significant risk to public health. To combat these effects, it is necessary to identify the circulating pathogens to create effective control measures. This study identified Anaplasma and Ehrlichia species in ticks collected from livestock in the Kassena-Nankana Districts between February 2020 and December 2020. A total of 1550 ticks were collected from cattle, sheep and goats. The ticks were morphologically identified, pooled and screened for pathogens using primers that amplify a 345 bp fragment of the 16SrRNA gene and Sanger sequencing. The predominant tick species collected was Amblyomma variegatum (62.98%). From the 491 tick pools screened, 34 (6.92%) were positive for Ehrlichia and Anaplasma. The pathogens identified were Ehrlichia canis (4.28%), Ehrlichia minasensis (1.63%), Anaplasma capra (0.81%) and Anaplasma marginale (0.20%). This study reports the first molecular identification of the above-mentioned Ehrlichia and Anaplasma species in ticks from Ghana. With the association of human infections with the zoonotic pathogen A. capra, livestock owners are at risk of infections, calling for the development of effective control measures.


Assuntos
Carrapatos , Animais , Bovinos , Ovinos , Humanos , Gado , Gana , Ehrlichia/genética , Anaplasma/genética , Cabras
13.
Parasit Vectors ; 15(1): 381, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271451

RESUMO

Arboviral diseases such as dengue, Zika and chikungunya transmitted by Aedes mosquitoes have been reported in 34 African countries. Available data indicate that in recent years there have been dengue and chikungunya outbreaks in the West Africa subregion, in countries including Côte d'Ivoire, Burkina Faso, Gabon, Senegal, and Benin. These viral diseases are causing an increased public health burden, which impedes poverty reduction and sustainable development. Aedes surveillance and control capacity, which are key to reducing the prevalence of arboviral infections, need to be strengthened in West Africa, to provide information essential for the formulation of effective vector control strategies and the prediction of arboviral disease outbreaks. In line with these objectives, the West African Aedes Surveillance Network (WAASuN) was created in 2017 at a meeting held in Sierra Leone comprising African scientists working on Aedes mosquitoes. This manuscript describes the proceedings and discusses key highlights of the meeting.


Assuntos
Aedes , Infecções por Arbovirus , Febre de Chikungunya , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Côte d'Ivoire/epidemiologia , Dengue/epidemiologia
14.
J Med Entomol ; 59(6): 2090-2101, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36066455

RESUMO

The most widespread arboviral diseases such as Dengue, Chikungunya, and Zika are transmitted mainly by Aedes mosquitoes. Due to the lack of effective therapeutics for most of these diseases, vector control remains the most effective preventative and control measure. This study investigated and compared the species composition, insecticide susceptibility, and resistance mechanisms in Aedes mosquito populations from a forest reserve converted to an eco-park and a peri-domestic sites in urban Accra, Ghana. Immature Aedes were sampled from the study sites, raised to adults, and exposed to deltamethrin, permethrin, DDT, fenitrothion, bendiocarb, permethrin + PBO, and deltamethrin + PBO using WHO tube assays. Melting curve analyses were performed for F1536C, V1016I, and V410L genetic mutations in surviving and dead mosquitoes following exposure to deltamethrin and permethrin. Microplate assay was used to access enzyme activity levels in adult mosquitoes from both populations. Aedes aegypti was found to be the dominant species from both study populations. The susceptibility test results revealed a high frequency of resistance to all the insecticides except fenitrothion. F1534C mutations were observed in 100% and 97% of mosquitoes from the peri-domestic and forest population, respectively but were associated with pyrethroid resistance only in the forest population (P < 0.0001). For the first time in Aedes mosquitoes in Ghana, we report the existence V410L mutations, mostly under selection only in the forest population (HWE P < 0.0001) and conclude that Aedes vectors in urban Accra have developed resistance to many commonly used insecticides. This information is important for the formulation of vector control strategies for Aedes control in Ghana.


Assuntos
Aedes , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Resistência a Inseticidas/genética , Aedes/genética , Inseticidas/farmacologia , Permetrina , Fenitrotion , Gana , Mosquitos Vetores/genética , Mutação
15.
Artigo em Inglês | MEDLINE | ID: mdl-35600674

RESUMO

High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.

16.
J Med Entomol ; 59(4): 1413-1420, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35452118

RESUMO

Higher temperatures expected in a future warmer climate could adversely affect the growth and development of mosquitoes. This study investigated the effects of elevated temperatures on longevity, gonotrophic cycle length, biting rate, fecundity, and body size of Anopheles gambiae (s.l.) (Diptera: Culicidae) mosquitoes. Anopheles gambiae (s.l.) eggs obtained from laboratory established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40°C), and 80 ± 10% RH. All adults were allowed to feed on a 10% sugar solution soaked in cotton wool; however, some mosquitoes were provided blood meal using guinea pig. Longevity was estimated for both blood-fed and non-blood-fed mosquitoes and analyzed using the Kaplan-Meier survival analysis. One-way ANOVA was used to test the effect of temperature on gonotrophic cycle length, biting rate, and fecundity. Adult measurement data were log-transformed and analyzed using ordinary least square regression with robust standard errors. Increasing temperature significantly decreased the longevity of both blood-fed (Log-rank test; X2(4) = 904.15, P < 0.001) and non-blood-fed (Log-rank test; X2(4) = 1163.60, P < 0.001) mosquitoes. In addition, the fecundity of mosquitoes decreased significantly (ANOVA; F(2,57) = 3.46, P = 0.038) with an increase in temperature. Body size (ß = 0.14, 95% CI, 0.16, 0.12, P < 0.001) and proboscis length (ß = 0.13, 95% CI, 0.17, 0.09, P < 0.001) significantly decreased with increasing temperature from 25 to 34°C. Increased temperatures expected in a future warmer climate could cause some unexpected effects on mosquitoes by directly influencing population dynamics and malaria transmission.


Assuntos
Anopheles , Malária , Animais , Tamanho Corporal , Cobaias , Longevidade , Temperatura
17.
Trop Med Int Health ; 27(4): 338-346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146843

RESUMO

OBJECTIVE: This study investigated the effects of temperature on the development of the immature stages of Anopheles gambiae (s.l.) mosquitoes. METHODS: Mosquito eggs were obtained from laboratory established colonies and reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38 and 40°C), and 80 ± 10% relative humidity. Larvae were checked daily for development to the next stage and for mortality. Pupation success, number of adults produced and sex ratio of the newly emerged adults were recorded. Larval survival was monitored every 24 h, and data were analysed using Kaplan-Meier survival analysis. Analysis of variance was used where data followed normal distribution, and a Kruskal-Wallis test where data were not normally distributed. Larval and pupal measurements were log-transformed and analysed using ordinary least square regression with robust standard errors. RESULTS: Increasing the temperature from 25 to 36°C decreased the development time by 10.57 days. Larval survival (X2 (6) = 5353.12, p < 0.001) and the number of adults produced (X2 (5) = 28.16, p < 0.001) decreased with increasing temperature. Increasing temperatures also resulted in significantly smaller larvae and pupae (p < 0.001). At higher temperatures, disproportionately more male than female mosquitoes were produced. CONCLUSIONS: Increased temperature affected different developmental stages in the life cycle of An. gambiae (s.l.) mosquitoes, from larval to adult emergence. This study contributes to the knowledge on the relationship between temperature and Anopheles mosquitoes and provides useful information for modelling vector population dynamics in the light of climate change.


Assuntos
Anopheles , Animais , Vetores de Doenças , Feminino , Humanos , Larva , Masculino , Mosquitos Vetores , Temperatura
18.
Sci Rep ; 11(1): 18055, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508114

RESUMO

The scale up of indoor residual spraying (IRS) and insecticide treated nets have contributed significantly to global reductions in malaria prevalence over the last two decades. However, widespread pyrethroid resistance has necessitated the use of new and more expensive insecticides for IRS. Partial IRS with pirimiphos-methyl in experimental huts and houses in a village-wide trial was evaluated against Anopheles gambiae s.l. in northern Ghana. Four different scenarios in which either only the top or bottom half of the walls of experimental huts were sprayed, with or without also spraying the ceiling were compared. Mortality of An. gambiae s.l. on partially sprayed walls was compared with the standard procedures in which all walls and ceiling surfaces are sprayed. A small-scale trial was then conducted to assess the effectiveness, feasibility, and cost of spraying only the upper walls and ceiling as compared to full IRS and no spraying in northern Ghana. Human landing catches were conducted to estimate entomological indices and determine the effectiveness of partial IRS. An established transmission dynamics model was parameterized by an analysis of the experimental hut data and used to predict the epidemiological impact and cost effectiveness of partial IRS for malaria control in northern Ghana. In the experimental huts, partial IRS of the top (IRR 0.89, p = 0.13) or bottom (IRR 0.90, p = 0.15) half of walls and the ceiling was not significantly less effective than full IRS in terms of mosquito mortality. In the village trial, the annual entomological inoculation rate was higher for the unsprayed control (217 infective bites/person/year (ib/p/yr)) compared with the fully and partially sprayed sites, with 28 and 38 ib/p/yr, respectively. The transmission model predicts that the efficacy of partial IRS against all-age prevalence of malaria after six months would be broadly equivalent to a full IRS campaign in which 40% reduction is expected relative to no spray campaign. At scale, partial IRS in northern Ghana would have resulted in a 33% cost savings ($496,426) that would enable spraying of 36,000 additional rooms. These findings suggest that partial IRS is an effective, feasible, and cost saving approach to IRS that could be adopted to sustain and expand implementation of this key malaria control intervention.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Compostos Organotiofosforados/administração & dosagem , Partículas e Gotas Aerossolizadas , Animais , Análise Custo-Benefício , Geografia , Gana/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Modelos Teóricos , Vigilância em Saúde Pública
19.
Mol Ecol ; 30(16): 3974-3992, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143538

RESUMO

Here, we report the first population genetic study to examine the impact of indoor residual spraying (IRS) on Plasmodium falciparum in humans. This study was conducted in an area of high seasonal malaria transmission in Bongo District, Ghana. IRS was implemented during the dry season (November-May) in three consecutive years between 2013 and 2015 to reduce transmission and attempt to bottleneck the parasite population in humans towards lower diversity with greater linkage disequilibrium. The study was done against a background of widespread use of long-lasting insecticidal nets, typical for contemporary malaria control in West Africa. Microsatellite genotyping with 10 loci was used to construct 392 P. falciparum multilocus infection haplotypes collected from two age-stratified cross-sectional surveys at the end of the wet seasons pre- and post-IRS. Three-rounds of IRS, under operational conditions, led to a >90% reduction in transmission intensity and a 35.7% reduction in the P. falciparum prevalence (p < .001). Despite these declines, population genetic analysis of the infection haplotypes revealed no dramatic changes with only a slight, but significant increase in genetic diversity (He : pre-IRS = 0.79 vs. post-IRS = 0.81, p = .048). Reduced relatedness of the parasite population (p < .001) was observed post-IRS, probably due to decreased opportunities for outcrossing. Spatiotemporal genetic differentiation between the pre- and post-IRS surveys (D = 0.0329 [95% CI: 0.0209 - 0.0473], p = .034) was identified. These data provide a genetic explanation for the resilience of P. falciparum to short-term IRS programmes in high-transmission settings in sub-Saharan Africa.


Assuntos
Inseticidas , Malária Falciparum , Repetições de Microssatélites , Controle de Mosquitos , Plasmodium falciparum , Estudos Transversais , Gana/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Estações do Ano
20.
Acta Trop ; 209: 105468, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416077

RESUMO

Arboviruses transmitted by Aedes mosquitoes are a growing global concern; however, there remain large gaps in surveillance of both arboviruses and their vectors in West Africa. We reviewed over 50 years of data including outbreak reports, peer-reviewed literature, and prior data compilations describing Zika, dengue, and chikungunya, and their vectors in West Africa. Large outbreaks of dengue, Zika, and chikungunya have recently occurred in the region with over 27,000 cases of Aedes-borne disease documented since 2007. Recent arboviral outbreaks have become more concentrated in urban areas, and Aedes albopictus, recently documented in the region, has emerged as an important vector in several areas. Seroprevalence surveys suggest reported cases are a gross underestimate of the underlying arboviral disease burden. These findings indicate a shifting epidemiology of arboviral disease in West Africa and highlight a need for increased research and implementation of vector and disease control. Rapid urbanization and climate change may further alter disease patterns, underscoring the need for improved diagnostic capacity, and vector and disease surveillance to address this evolving health challenge.


Assuntos
Aedes/virologia , Infecções por Arbovirus/epidemiologia , Mosquitos Vetores/virologia , África Ocidental/epidemiologia , Animais , Infecções por Arbovirus/transmissão , Surtos de Doenças , Humanos , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA